仍要求对无法接受LU-177或RA-223治疗的患者进行转移性cast割前列腺癌(MCRPC)的有效且经济的治疗策略。越来越多地讨论了作为具有成本效益且节省时间的替代药物替代药物的传统药物开发替代品。质子泵抑制剂(PPI),如帕特拉唑唑,通常用作抗酸剂,也已被证明通过在多个癌细胞系中诱导凋亡来有效地在癌症化学预防中有效。维生素C是人体的必不可少的微量营养素,已被提出为潜在的抗癌剂。在这种情况下,我们是否研究了维生素C和pantraprazole的组合,用于管理转移性cast割 - 耐药性前列腺癌(MCRPC)。使用六个选择的人腺癌细胞系来研究吡喃吡唑对癌细胞微环境的影响(细胞外pH和外泌体的产生)。在多样化的处理后,分析了PC3异种移植物中肿瘤生长和肿瘤18F-FDG的摄取。我们的体外结果表明,通过调节pH值和癌细胞中外泌体的产生,pantraprazole增强了维生素C的细胞毒性活性。此外,由于pantoprazole在略微酸性的pH值下更有效,因此pantraprazole和维生素C的协同作用是pH依赖性的。在体内,使用pantraprazole和维生素C的联合治疗比单独使用维生素C或pantraprazole治疗产生更好的治疗结果,如肿瘤的生长和18F-FDG的摄取所示。因此,我们建议与维生素C结合使用的pantraprazole可能是管理MCRPC的可能策略。
由结核分枝杆菌引起的抽象结核病(TB)是世界上10种主要的杀手疾病之一。至少有四分之一的人口被感染,每年有130万人死亡。抗多药(MDR)和广泛抗药性(XDR)菌株的出现挑战结核病治疗。一线和二线方案中广泛使用的药物之一是吡嗪酰胺(PZA)。从统计上讲,50%的MDR和90%的XDR临床菌株对PZA具有抵抗力,并且最近的研究表明,其在耐PZA抗性菌株患者中的使用与较高的死亡率有关。因此,迫切需要开发准确且有效的PZA敏感性测定法。PZA穿过结核分枝杆菌,并通过PNCA基因编码的烟酰胺酶水解为其活性形式,吡唑酸(POA)。多达99%的临床耐PZA菌株在该基因中具有突变,这表明这是最可能的耐药机制。但是,并非所有PNCA突变都赋予PZA稳定性,而只会导致POA产生有限。因此,对PZA的敏感性可能仅仅是由于其形成或不形成POA的能力而言。在这里,我们提出了一种NU-清晰的磁共振方法,可以直接在TB患者收集的痰液上清液中准确量化POA。确定了临床痰培养物水解PZA的能力,结果与其他生化和分子PZA药物易感性测定的结果相关。获得的出色敏感性和特定的价值观表明,该方法可能成为确定PZA敏感性的新金标准。
EBI2受体的内源配体,氧化酚7α,25OHC,至关重要的免疫反应,受CH25H,CYP7B1和HSD3B7酶的细节调节。淋巴样细胞和T细胞卵泡中的卵泡树突状细胞保持7α,25OHC的梯度,基质细胞增加,树突状细胞降低了其浓度。该梯度对于淋巴组织中适当的B细胞定位至关重要。在多发性硬化症的动物模型中,实验性自身免疫性脑脊髓炎,7α的水平,25OHC迅速增加了中枢神经系统的迅速增加,驱动EBI2通过血脑屏障(BBB)表达免疫细胞的迁移。要探索脑中的血管细胞是否表达这些酶,我们检查了正常的小鼠脑微孔塞尔,并研究了它们在炎症过程中表达的变化。EBI2在内皮细胞,周细胞/平滑肌细胞和星形胶质细胞端层中大量表达。CH25H,CYP7B1和HSD3B7在每种细胞类型中都被多样检测,这表明它们在氧化酚7α,25OHC合成和在不同条件下的梯度维持和梯度维持。在EBI2中出现了明显的物种特异性差异以及小鼠和人类BBB形成细胞之间的酶水平。在急性炎症条件下,EBI2和合成酶调节下发生在大脑中,基于酶的大小和方向。最后,在体外星形胶质细胞迁移模型中,CYP7B1抑制剂氯吡唑以及EBI2拮抗剂NIBR189抑制了脂多糖诱导的细胞迁移,表明EBI2及其在炎症下脑细胞迁移的脑细胞迁移中的配体受到了侵略。
摘要。在这项研究中,我们研究了用于光电应用的新定制有机半导体材料,例如有机太阳能电池。基于碳的有机半导体材料具有有机薄膜形式的有希望的优势。此外,由于其低成本,有机薄膜比无机薄膜合适,更便宜。有机半导体材料的带隙可以进行调整,并且主要位于2.0 eV和4 eV之间,而有机半导体的光吸收边缘通常位于1.7 eV和3 eV之间。可以通过修改碳链和传说轻松量身定制它们,并且看起来很有前途,可以使乐队盖上利用太阳能频谱进行工程。在这项工作中,使用了新的量身定制的有机半导体,探索了解决方案途径,这是一种低成本处理方法。(蒽-9-基)亚甲基萘1-胺; 4-(Anthracen-9-甲基甲基氨基)-1,5-二甲基-2-苯基-1H-1H-吡唑-3--和N-(Anthracen-9-基甲基)-3、4-二甲氧基烷基纤维滤波器通过与0.05 wt。%和0.005 wt.%和0.08 wt等浓度进行的自旋涂层处理。薄膜,并在55°C退火。通过X射线衍射(XRD),扫描电子显微镜(SEM)和UV-Visible Spectroscoppy技术,研究了N-(炭疽-9-甲基)-3,4-二甲氧烷有机半导体薄膜。合成样品的XRD数据表明有机层的纳米结晶度。和,当我们将wt。%0.05到0.08时,SEM显微照片显示了密集的填料。此外,对光学吸收测量值的分析发现,合成的薄膜的工程带隙为2.18 eV,2.35 eV,2.36EV,2.52EV,2.52EV和2.65EV,这表明适用于对OptoelectRonic设备(例如Solar Cell)的应用。这种轻巧,环保和一次性的新碳基材料似乎有可能替代其他传统的危险重型材料,从而使未来的生态友好型快速电子产品。
Kress于1995年加入了过程研究小组中的高级研究化学家,他的研究重点是开发默克糖尿病和疼痛特许经营中各种药物开发目标的有效合成过程。加入Cephalon,Inc。后,Kress于2007年返回默克公司,担任制药开发执行董事,并晋升为制药研究与开发副总裁。在药品开发任职期间,他支持关键开发计划和糖尿病,睡眠障碍和乙型肝炎的产品发射。自2021年以来,Kress领导了开发科学和临床供应,将药物药物,药物,分析和临床供应功能带入一个组织。
摘要:人免疫缺陷病毒类型1(HIV-1)的逆转录酶(RT)是必需的酶,将单链病毒RNA基因组转化为双链病毒病毒DNA。非核苷逆转录酶抑制剂(NNRTIS)对于开发新型有效抑制剂而引人入胜,因为它们具有很高的敏感性和高特异性。但是,发生突变引起的耐药性的快速发展。如今,影响HIV-1 RT突变的新型nnrtis具有挑战性。在这项研究中,一些新的NNRTI被研究如下。 (1)发现一系列的NNRTIS吡嗪酮可活跃于野生型HIV-1 RT,其中一些也对突变的HIV-1 RT也有效。因此,需要吡唑酮与HIV-1 RT的特异性结合模式,以暗示针对野生和突变的HIV-1 RT的新型有效nnrtis的设计。已经应用了分子对接,3D-QSAR和量子化学计算的组合。选择了每个吡嗪酮的对接构象来构建COMFA和COMSIA模型。这两个模型都表明,在氨基苯基位置处的取代基更喜欢笨重,吸电子,H-copceptor和不利的疏水基团。此外,在化合物No之间获得的相互作用能量。9和量子化学计算的结合口袋显示与GLU138(b)的重要相互作用。使用6-31G(D),6-31G(D,P),6-311G(D)和6-311G(D)和6-311G(D)(D,P)基集,使用B3LYP和MP2方法计算B3LYP和MP2方法之间的相互作用能与BSSE进行。(2)HIV-1逆转录酶抑制剂的相互作用,S-3-乙基-7-氟-4-异丙氧基 - carbonyl-3,4-二氢 - Quinoxalin-2(1H)-Nyoxalin-2(1H)-One(1H) - 酮(GW420867X)(GW420867X),并使用野生型HIV-1 RT结合袋,使用量化量化量。尤其是,使用各种模型计算出与抑制剂结合的最重要氨基酸的相互作用能量,以评估必须考虑哪些终止残基。最佳结果证实了GW420867X通过铵基和Lys101的骨架原子之间的氢键形成了与Lys101最重要的相互作用。结果对于描述NNRTIS的结合模式并提出了新的有效NNRTIS的设计。
胶质瘤相关小胶质细胞和巨噬细胞 (GAMM) 是创造免疫抑制微环境的关键因素。通过抑制集落刺激因子 1 受体 (CSF-1R),可以有效地靶向它们。我们应用了非侵入性 PET/CT 和 PET/MRI,使用 18 F-氟乙基酪氨酸 ( 18 F-FET)(氨基酸代谢)和 N,N -二乙基-2-[4-(2- 18 F-氟乙氧基)苯基]-5,7-二甲基吡唑并 [1,5- a]嘧啶-3-乙酰胺 ( 18 F-DPA-714)(转运蛋白)来了解 GAMM 在胶质瘤发生中的作用,监测体内治疗引起的 GAMM 耗竭,并观察停药后 GAMM 的重新繁殖。方法:将同源小鼠 GL261 胶质瘤细胞原位植入 C57BL/6 小鼠(n=44),分别使用 CSF-1R 抑制剂 PLX5622(6-氟-N-((5-氟-2-甲氧基吡啶-3-基)甲基)-5-((5-甲基-1H-吡咯并[2,3-b]吡啶-3-基)甲基)吡啶-2-胺)或载体进行不同方案治疗,建立预处理模型和再植入模型。对小鼠进行纵向 PET/CT 和 PET/MRI 检查。结果:预处理模型显示,基于 MRI(44.5% 6 24.8%)、18 F-FET PET(18.3% 6 11.3%)和 18 F-DPA-714 PET(16% 6 19.04%)体积动态,所有组中肿瘤生长相似,表明 GAMM 不参与神经胶质瘤的发生。再增殖模型显示 18 F-DPA-714 摄取显著降低(2 45.6% ± 18.4%),即使再增殖后 GAMM 滤过率也显著降低,MRI 测量显示再增殖后肿瘤体积显著减小(2 54.29% ± 8.6%),18 F-FET 摄取显著降低(2 50.2% ± 5.3%)也支持这一结论。结论:18 F-FET 和 18 F-DPA-714 PET/MRI 可在各种 CSF-1R 治疗方案下对神经胶质瘤生长情况进行非侵入性评估。CSF-1R 介导的 GAMM 调节可能对神经胶质瘤的治疗或辅助治疗具有很高的兴趣。
凋亡(通常称为程序性细胞死亡)不断发生在人类中。随着癌细胞的酸度增加,诱发了凋亡。在健康细胞中,质子泵蛋白允许H +离子渗透到细胞膜,从而调节pH值。然而,质子泵抑制剂(PPI),例如奥美拉唑,防止质子运动,导致pH调节。在先前的研究中,奥美拉唑诱导了Jurkat T淋巴细胞的细胞死亡;但是,尚无证实细胞是通过细胞凋亡或通过坏死而死亡的,而细胞爆发。通过使用膜联蛋白-V染色,可以测量奥美拉唑,右氯唑唑和埃索美吡唑对凋亡诱导的影响。细胞死亡。右兰索拉唑和埃索美拉唑在18小时时均达到100%的凋亡,表明它们具有较早的凋亡激活点。为了测量细胞活力的程度,通过用小钙蛋白 - 乙酰氧基甲基(AM)染料染色细胞来测量胞质酯酶活性。Jurkat细胞暴露于Omeprazole,Dexlansoprazole和Esomeprazole六个小时,并监测30小时以测量生存能力。阿霉素是一种已知的化学治疗性,在测试凋亡诱导和生存力时也被用作阳性对照。使用荧光显微镜成像时,由于膜联蛋白V-FITC的结合而导致凋亡荧光的任何细胞以及由于PI的结合而导致的坏死细胞荧光。用钙软蛋白AM(如果细胞荧光,它们)被认为是可行的,而非荧光细胞被认为是坏死的。在30小时的标记下,右倾角唑的生存力最小(40.0±3.5%的细胞可行),其次是阿霉素(62.9±1.8%),埃索美普唑(66.2±1.6%)和欧洲普拉唑(69.29±2.01%)(69.29±2.01%),在比较(71%)中(71%)(71%)。右兰索拉唑的生存能力低,表明需要使用相同的PPI和暴露方法进行毒性研究,以确定最佳药物浓度。奥美拉唑和埃索美瑞唑的最佳浓度为1 µm,右兰索拉唑啉为0.5 µm。未来的研究包括使用膜联蛋白V-FITC和碘化丙啶(PI)染料在确定浓度下测试细胞死亡方法。
药学学士(KU)、药学硕士 (药物化学) (AU)、博士D (KU):博士研究合成作为抗过敏剂的色酮-3-甲醛新衍生物。在德国雷根斯堡大学和法兰克福 ASTA medica AG 进行博士后研究,在 DAAD 奖学金资助下合成作为白介素抑制剂的新喹诺酮。1991 年 4 月加入瓦朗加尔卡卡蒂亚大学药学学院,担任教员。担任该学院院长。目前担任学院院长。还在利比亚担任教授一年。学术和研究成果:他的研究重点是各种杂环药物的设计、合成及其抗癌、抗糖尿病、抗炎和抗菌(包括结核病)活性的药理学评价。他致力于研究 4, 3′ 和 4, 4′ 双吡啶单肟季盐作为乙酰胆碱酯酶再活化剂的合成和生物活性及其作为农药中毒解毒剂的用途。还致力于苯氧基嘧啶基咪唑、新型取代苯并咪唑衍生物和吡唑基脲衍生物作为 p38 激酶抑制剂的分子建模研究,新型嘧啶基苯并噻唑胺衍生物的合成和抗炎活性。进行了新的二氢吡啶衍生物作为人类MRP1抑制剂的分子对接研究,并在体外研究中鉴定出一些具有强效多药耐药逆转剂活性的分子。我们制备了新的1,4-二氢吡啶,与一线药物吡嗪酰胺相比,具有显着的抗结核活性(MIC = 12.5-25 μg/mL)。我们可以在《欧洲药物化学杂志》(2011,46(5),1564-71)上发表这项工作。与奥斯马尼亚大学合作,合成了一系列新型2-(取代2H-色满-3-基)-5-芳基-1H-咪唑衍生物,作为抗血管生成和抗癌剂。合成了一系列新的吡咯并[2,3-d]嘧啶衍生物,并针对人类结肠癌细胞系进行了评估。他还参与了法兰克福大学氟化非咪唑组胺 H3 受体拮抗剂的合成。其他贡献:在同行评审期刊上发表了约 45 篇研究论文,并指导了 08 名博士生。他曾担任药学研究委员会主席。作为 AICTE 质量改进计划 (QIP) 的一部分,他作为药学教师召集人开展了几个为期两周的员工发展计划。贡土尔阿查里亚纳加朱纳大学和卡卡蒂亚大学学术委员会成员,他还担任 EAMCET 和 PGCET 的地区协调员 (瓦朗加尔)。奖项和荣誉:ICMR(印度医学研究理事会)和 UGC 的初级研究员以及德国学术交流中心 (DAAD) 研究员。
D.基因编辑引入的性状的描述是除草剂抗性。通过使用碱基编辑器的特定碱基转变到O. sativa和T. aestivum的HPPD蛋白中产生的突变(Zong等,2018)。此外,由于对HPPD抑制除草剂的敏感性降低而获得了突变的HPPD酶。例如,获得了源自假单胞菌菌株A32的HPPD突变体G336W(Matringe等人。2005)。 活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。 另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。 2014; Siehl等。 2014)。 该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。 基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。 2018)。 尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。 靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。 将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。2005)。活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。2014; Siehl等。2014)。该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。2018)。尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。hppd是来自不同化学家族的除草剂的靶位部位,例如依氧唑(isoxaflutole和pyrasulfotole),吡唑酮(topramezone)和triketones(Mesotrione,Bicyclopyrone和tembotrione)(Lee等人)(Lee等人,1998年)。用这些除草剂治疗后,由于胡萝卜素合成的丧失,易感植物表现出漂白症状,并最终导致细胞膜的脂质过氧化。