2021-2024 年节约和需求管理框架下提供的一系列计划计划将在未来三年继续实施。为了应对省级政策方向,2025-2027 年 DSM 计划组合将扩大到包括新的住宅计划,这些计划与 Enbridge Gas Inc. 合作开发,并通过一站式方式提供,以方便住宅消费者参与。还将为地方配电公司 (LDC) 提供新资金,以支持客户参与全省 DSM 计划,并为 LDC 提供资金,以开发和实施满足配电系统需求的当地计划,这些计划也为 IESO 控制的电力系统提供上游利益。为了支持使用非管制燃料(如取暖油或丙烷)取暖的消费者参与节能计划,正在向住宅和符合收入条件的计划增加额外预算,用于有益的电气化措施。这笔资金将使那些想要升级房屋的消费者能够参与这些计划,并获得与目前使用电力取暖的消费者相同的激励措施。计划于 2026 年推出更多新计划,以实现商用 HVAC 系统的需求响应 (DR),并于 2027 年推出激励住宅和商业新建筑的能源效率的计划。有关每个计划提供的各种激励措施的详细信息以及如何申请的说明,请访问 SaveOnEnergy .ca 。
抽象的生物探测可以发现具有有趣的生态特征和有价值的生物技术特征的新酵母菌菌株和物种,例如将不同的碳源从工业侧转化为生物蛋白酶UCT的能力。在这项研究中,我们在热带西非进行了未靶向的酵母菌生物镜头,收集了1,996株分离株,并在70种不同的环境中确定了它们的生长。该系列包含许多分离株,具有吸收几种具有成本效益且可持续的碳和氮源的潜力,但我们专注于含有203种能够生长在乳糖上的菌株的特征,乳糖是乳制品的主要碳源,这是乳制品行业丰富的侧流奶酪乳清中的主要碳源。通过内部转录的间隔测序对乳糖映射菌株,我们从腹部和基本肌菌群中鉴定了30种不同的酵母菌物种,以前没有证明其中有一些在乳糖上生长,有些是新物种的候选者。观察到的生长和细胞外乳糖酶活性的生长和比率差异表明,酵母菌使用一系列不同的策略来代谢乳糖。值得注意的是,几种基质菌酵母,包括apiotirichum mycotoxinivorans,Papiliotrema laurentii和Moesziomyces natararcitus,积累了多达40%的细胞干重的脂质,证明它们可以将乳糖转化为重大生物含量的生物产物。
b“氧扩散,在整个共培养室中产生氧梯度。含有10%氧气的基底外侧气流通过气体入口进入,并用磁性搅拌器均匀地通过不对称的共培养室扩散。排气通过气体插座排放,完成了系统的气流(Fofanova等,2019)。该图是使用生物者创建的。(b)不对称共培养室的物理图片。(c)在将FITC-DEXTRAN添加到包含Tigk单层的Transwells的顶端室后,在24小时内比较了基底外侧室内FITC-脱骨的荧光强度。在常规氧培养条件下未分化(阴性对照)和分化的Tigks(称为\ XE2 \ X80 \ X9CNORMOXIC \ XE2 \ X80 \ X9D)与在不对称培养条件下的分化Tigk(称为AS AS AS) \ xe2 \ x80 \ x9casymmetric \ xe2 \ x80 \ x9d)。对于每种条件,减去空白培养基的背景荧光强度。未分化的TIGK单层在正常氧状态下培养,然后切换为包含Ca 2+的分化培养基,用作负面对照。(N.S.:p> 0.05,***:p <0.001,n = 2技术重复,n = 3个生物重复序列)。(e)在常氧和不对称培养条件下培养的TIGK单层中细胞活力的比较。热处理细胞是阴性对照(N.S.:p> 0.05,**:p <0.01,n = 3,n = 3)。(d)Transwell插入物中的Tigk单层的形态在正常氧化条件下维持在细胞培养培养基中,或在不对称的共培养室中培养24小时。已知胶原蛋白由于胶原纤维的存在而影响明亮的田间成像,与未涂层的表面相比,该胶原纤维可能会掩盖所观察到的细胞或结构的细节(Hashimoto等,2020)。
本方案描述了如何将由纯化的 Cas9 核酸酶与化学修饰的合成单向导 RNA (sgRNA) 组成的核糖核蛋白 (RNP) 复合物递送至标准永生化细胞系(粘附或悬浮)。尽管针对 HEK293(人胚胎肾 293 细胞)进行了优化,但本方案可能适用于许多其他细胞系(例如 A549、U2OS、HeLa、CHO、MCF-7)。RNP 递送是使用 Lipofectamine™ CRISPRMAX™ 转染试剂完成的。化学修饰的 sgRNA 旨在抵抗核酸外切酶的降解并防止可能导致细胞死亡的先天性细胞内免疫级联。本方案可用于转染 EditCo 的多向导基因敲除试剂盒。
卫生科学局 (HSA) 想向公众通报 2024 年 10 月海外监管机构发现并报告的产品含有不允许使用的强效成分,可能会引起副作用。提供此信息是为了提高人们对海外发现的此类产品的安全问题的认识,这些产品可能会影响当地居民。请参阅附件 A 和附件 B 了解产品清单和强效成分可能产生的副作用。
大肠杆菌是一种可引起轻微和严重疾病的细菌。它呈大肠杆菌状。它是腹泻的主要原因。它是食物和人类消化道中发现的细菌。一些大肠杆菌菌株是无害的,而另一些则会导致疾病。一些大肠杆菌会导致腹泻,而另一些会导致尿路感染、呼吸道疾病和肺炎等疾病。它通过粪便沉积释放到环境中,并被用作污水或粪便污染水道的指标。作为水分析的一部分,大肠杆菌的数量可用于识别有机污染最严重的水源。当池塘、海滩和湖泊等休闲区中的大肠杆菌数量达到一定水平时,它们会被关闭,因为它们对健康和安全构成风险。一些可能的粪便污染源包括农业径流、以该地区为自然栖息地的野生动物、被宠物粪便污染的地区的径流、污水处理厂和现场化粪池系统。
1 哈佛大学分子与细胞生物学系,52 Oxford St.,剑桥,MA 02138,美国 2 高能物理部,史密森天体物理观测台,哈佛与史密森天体物理中心,60 Garden St,剑桥,MA 02138,美国 3 LRL-CAT,礼来公司,先进光子源,阿贡国家实验室,9700 S. Cass Avenue,莱蒙特,伊利诺伊州,60439,美国 4 钻石光源,哈威尔科学与创新园区,迪德科特,OX11 0DE,英国 5 哈佛大学纳米系统中心,11 Oxford St,LISE G40,剑桥,MA 02138,美国 6 蒙大拿州立大学地球科学系,226 Traphagen Hall,PO Box 173480,博兹曼,MT 59717,美国 7 PLEX 公司,275 Martine St.,美国马萨诸塞州福尔里弗 02723 100 室 通讯作者:Julie EM McGeoch;电子邮件:Julie.mcgeoch@cfa.harvard.edu
卫生科学局 (HSA) 想向公众通报 2024 年 9 月海外监管机构发现并报告的产品含有不允许使用的强效成分,可能会引起副作用。提供此信息是为了提高人们对海外发现的此类产品的安全问题的认识,这些产品可能会对当地居民产生影响。请参阅附件 A 和附件 B 了解产品清单和强效成分可能产生的副作用。
将化疗药物如阿霉素 (DOX) 封装在脂质纳米颗粒 (LNP) 中可以克服其急性全身毒性。然而,通过实施安全的刺激响应策略,在肿瘤微环境中精确释放药物以提高最大耐受剂量并减少副作用尚未得到很好的证实。本研究提出了一种集成纳米级穿孔来触发混合等离子体多层 LNP 中的 DOX 释放,该 LNP 由聚集在内部层界面的 5 nm 金 (Au) NP 组成。为了促进位点特异性 DOX 释放,开发了一种单脉冲辐射策略,利用纳秒脉冲激光辐射 (527 nm) 与混合纳米载体的等离子体模式之间的共振相互作用。与传统的 DOX 负载 LNP 相比,这种方法将靶细胞中的 DOX 量增加了 11 倍,导致癌细胞显著死亡。脉冲激光与混合纳米载体相互作用的模拟表明,释放机制由 AuNP 簇附近薄水层的爆炸性蒸发或过热脂质层的热机械分解介导。该模拟表明,由于温度分布高度集中在 AuNP 簇周围,因此在辐射后 DOX 的完整性完好无损,并突显出受控的光触发药物输送系统。