受二嵌段共聚物 (DBC) 丰富的相分离行为启发,二嵌段共聚物 (DBC) 和无机前体的协同自组装 (共组装) 可以实现具有所需尺寸的多种功能纳米结构。在采用聚苯乙烯嵌段聚氧化乙烯和 ZnO 的 DBC 辅助溶胶-凝胶化学方法中,通过狭缝模头涂层形成混合薄膜。打印纯 DBC 薄膜作为对照。进行原位掠入射小角度 X 射线散射测量,以研究薄膜形成过程中的自组装和共组装过程。结合互补的非原位表征,区分出几种不同的方式以描述从最初的溶剂分散到最终固化的薄膜的形态转变。组装途径的比较表明,建立纯 DBC 薄膜的关键步骤是球形胶束向圆柱形域的聚结。由于存在相选择性前体,溶液中圆柱形聚集体的形成对于混合膜的结构发展至关重要。墨水中预先存在的圆柱体阻碍了混合膜在随后的干燥过程中的域生长。前体降低了有序度,防止了 PEO 嵌段的结晶,并在混合膜中引入了额外的长度尺度。
本文档是公认的手稿版本的已发表作品,该作品以最终形式出现在Langmuir,版权所有©美国化学学会之后,在出版商的同行评审和技术编辑后。要访问最终编辑和发布的工作,请参见http://dx.doi.org/10.1021/la302799s
80 戊-1-铵 ( m = 4),81 己-1-铵 ( m = 5),81 庚-1-铵 ( m = 6),82 辛-1-铵 ( m = 7),82 壬-1-铵 ( m = 8);82 癸-1-铵 ( m = 9),82, 83 十一-1-铵 ( m = 10);83 RP2,2-(甲硫基)乙胺 (MTEA);84 RP3,烯丙基铵 (ALA);85 RP4,丁-3-炔-1-铵 (BYA);86 RP5,2-氟乙基铵;87 RP6,异丁基铵 (iso-BA);88 RP7,4-丁酸铵 (GABA);89 RP8,5-戊酸铵 (5-AVA); 90 RP9,杂原子取代的烷基铵;91 RP10,环丙基铵;92, 93 RP11,环丁基铵;92, 93 RP12,环戊基铵;92, 93 RP13,环己基铵;92, 93 RP14,环己基甲基铵;94 RP15,2-(1-环己烯基)乙基铵;95, 96 RP16,(羧基)环己基甲基铵 (TRA);97 RP17,苯基三甲基铵 (PTA);98 RP18,苄基铵 (BZA);99-104 RP19,苯乙铵 (PEA);50, 100, 101, 105-108 RP20,丙基苯基铵 (PPA); 100, 101 RP21,4-甲基苄基铵;109 RP22,4-氟苯乙铵 (F-PEA);106, 110-113 RP23,2-(4-氯苯基) 乙铵 (Cl-PEA);111 RP24,2-(4-溴苯基) 乙铵 (Br-PEA);111 RP25,全氟苯乙铵 (F5-PEA);114 RP26,4-甲氧基苯乙铵 (MeO-PEA);112 RP27,2-(4-芪基)乙铵 (SA);115 RP28,2-(4-(3-氟)芪基)乙铵 (FSA); 115 RP29,2-噻吩基甲基铵 (ThMA);116 RP30,2-(2-噻吩基)乙铵;116 RP31,2-(4'-甲基-5'-(7-(3-甲基噻吩-2-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)乙-1-铵 (BTM);117 RP32,1-(2-萘基)甲铵 (NMA);118 RP33,2-(2-萘基)乙铵 (NEA);118 RP34,萘-O-乙铵;119 RP35,芘-O-乙铵;119 RP36,苝-O-乙铵; 119 RP37,3-碘吡啶(IPy);97 RP38,咔唑烷基铵(CA-C4)。120 DJ 相:DJ1,丙烷-1,3-二胺(PDA,m = 3);121 丁烷-1,4-二胺(BDA,m = 4);122-126 戊烷-1,5-二胺(m = 5);125 己烷-1,6-二胺(HDA,m = 6);124,125 庚烷-1,7-二胺(m = 7);125 辛烷-1,8-二胺(ODA,m = 8);124,125 壬烷-1,9-二胺(m = 9)125 癸烷-1,10-二胺(m = 10); 126 十二烷-1,12-二铵(m=12);126, 127 DJ2,N 1 -甲基乙烷-1,2-二铵(N-MEDA);128 DJ3,N 1 -甲基丙烷-1,3-二铵(N-MPDA);128 DJ4,2-(二甲氨基)乙基铵(DMEN);129 DJ5,3-(二甲氨基)-1-丙基铵(DMAPA);129 DJ6,4-(二甲氨基)丁基铵(DMABA);129 DJ7,质子化硫脲阳离子;130 DJ8,2,2′-二硫代二乙铵;91, 131 DJ9,2,2′-(亚乙基二氧基)双(乙基铵) (EDBE);132 DJ10,2-(2-
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
传统的机油燃料汽车。燃料电池车辆依赖于将氢或甲醇转化为电的燃料电池。当前的领先技术是质子交换膜燃料电池(PEMFC),该技术用气态氢和质子导电膜运行。它提供了许多好处:良好的效率,可靠性和耐用性。但是,整体成本仍然很高,并且在传播技术方面的性能和耐用性方面的改善仍然是必要的。到目前为止已经研究了两种主要策略:一种涉及较便宜的催化剂的设计和开发,例如Pt/motybdenum Carbides; [2]另一个有吸引力的解决方案是在高温下操作PEMFC,这将简化热量管理,提高效率,提高质量运输,并极大地限制了一氧化碳对含量的催化剂。[3]美国能源部为PEMFC操作设定了120°C的操作温度。然而,由全氟磺酸(PFSA)聚合物组成的最先进的质子交换膜(PEM)被认为是基准材料,具有较差的机械和导电性能,可大大降低其在t> 100°C时的功效,从而限制了工作温度。在过去的二十年中,科学界制定了许多策略,以增强High
摘要:微电网经济功率优化调度是新型电力系统优化的重要组成部分,对降低能源消耗和环境污染具有重要意义,微电网不仅要满足基本供电需求,还要提高经济效益。本文考虑发电成本、放电成本、购电成本、售电收入、电池充放电功率约束、充放电时间约束,提出了多场景下风光储微电网联合优化模型,并给出了相应的基于粒子群优化的模型求解算法。此外,以白洋淀地区王家寨项目为例,验证了所提模型和算法的有效性。对多场景下的风光储微电网联合优化模型进行了探讨和研究,并给出了多场景下的最优经济功率调度方案。我们的研究表明:(1)蓄电池可以起到削峰填谷的作用,可以使微电网更具经济性;(2)当购电价低于可再生能源发电成本时,如果允许风电、光伏弃风,微电网将产生更高的经济效益;(3)限制微电网与主网之间的交换功率,会对微电网的经济性产生负面影响。
摘要:T-2毒素为A型单端孢霉烯族毒素。为了降低T-2毒素的副作用并提高其肿瘤靶向性,本研究制备并表征了T-2毒素pH敏感脂质体(LP-pHS-T2)。以T-2毒素为对照,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四唑溴化物法检测LP-pHS-T2对A549、Hep-G2、MKN-45、K562和L929细胞系的细胞毒性。研究了LP-pHS-T2对Hep-G2细胞的凋亡和迁移影响。LP-pHS-T2的制备工艺涉及以下参数:二棕榈酰磷脂酰胆碱:二油酰磷脂酰乙醇胺,1:2;总磷脂浓度20 mg/ml,磷脂:胆固醇3:1,4-(2-羟乙基)-1-哌嗪乙磺酸缓冲液(pH 7.4),10 ml,药脂比2:1,超声10 min后挤压,包封率达95±2.43%。挤压后LP-pHS-T2平均粒径为100 nm,透射电镜观察显示LP-pHS-T2呈圆形或椭圆形,大小均匀。释放曲线呈现两阶段下降趋势,前6 h T-2毒素快速渗漏(释放量~20%),随后持续释放至48 h(释放量~46%),48-72 h渗漏率增加(释放量~76%),72 h时达到最低。当LP‑pHS‑T2浸泡在0.2 mol/l磷酸二钠‑磷酸二氢钠缓冲液(pH 6.5)中时,释放速度明显加快,释放率可达91.2%,表现出较强的pH敏感性。抗肿瘤试验表明,LP‑pHS‑T2能够促进Hep‑G2细胞凋亡,抑制其迁移。本研究为基于T‑2毒素的抗癌药物的开发提供了一种新方法。
PrimeGreen的核心活动是提供从拉丁美洲到欧洲化妆品行业的天然和纯净的优质产品。我们相信一种健康的商业模式,它创造了价值,同时也要照顾所有相关者的利益。从农场工人,种植园周围的居民一直到最终客户。
参考文献1。US FDA。更新了Covid-19-19疫苗,用于美国从2023年秋季开始使用。(2023年6月17日访问,访问https://www.fda.gov/vaccines-blood-biologics/updated-covid-19- vaccines-sacines-use-use-us-united-states-beginning-beginning-fall-2023。)2。Jackson LA,Anderson EJ,Rouphael Ng等。 针对SARS-COV-2-初步报告的mRNA疫苗。 n Engl J Med 2020; 383:1920-31。 3。 Gilbert PB,Montefiori DC,McDermott AB等。 免疫相关性分析mRNA-1273 Covid-19疫苗疗效临床试验。 科学2022; 375:43-50。 4。 Chalkias S,Whatley J,Eder F等。 野生型单价和Omicron Ba.4/Ba.5 Ba.5 Ba.5 Ba.5 Covid-199 mRNA疫苗的分析:2/3阶段试验临时结果自然医学2023。 doi:10.1038/s41591-023-02517-y; https://www.ncbi.nlm.nih.gov/pubmed/37653342。 5。 Chalkias S,Harper C,Vrbicky K等。 针对COVID-19的含二价抗球助力疫苗。 n Engl J Med 2022; 387:1279-91。 6。 Chalkias S,Harper C,Vrbicky K等。 针对COVID-19的二价抗球助力疫苗的三个月抗体持久性。 nat Commun 2023; 14:5125。 https://doi.org/10.1038/S41467-023-38892-W。 7。 Yamasoba D,Uriu K,Plianchaisuk A等。 SARS-COV-2 OMICRON XBB.1.16变体的病毒学特征。 柳叶刀感染DIS 2023; 23:655-6。 8。 CDC。 covid数据跟踪器:变体比例。 2023。 9。 2023。Jackson LA,Anderson EJ,Rouphael Ng等。针对SARS-COV-2-初步报告的mRNA疫苗。n Engl J Med 2020; 383:1920-31。3。Gilbert PB,Montefiori DC,McDermott AB等。免疫相关性分析mRNA-1273 Covid-19疫苗疗效临床试验。科学2022; 375:43-50。4。Chalkias S,Whatley J,Eder F等。野生型单价和Omicron Ba.4/Ba.5 Ba.5 Ba.5 Ba.5 Covid-199 mRNA疫苗的分析:2/3阶段试验临时结果自然医学2023。doi:10.1038/s41591-023-02517-y; https://www.ncbi.nlm.nih.gov/pubmed/37653342。5。Chalkias S,Harper C,Vrbicky K等。针对COVID-19的含二价抗球助力疫苗。n Engl J Med 2022; 387:1279-91。6。Chalkias S,Harper C,Vrbicky K等。针对COVID-19的二价抗球助力疫苗的三个月抗体持久性。nat Commun 2023; 14:5125。 https://doi.org/10.1038/S41467-023-38892-W。 7。Yamasoba D,Uriu K,Plianchaisuk A等。 SARS-COV-2 OMICRON XBB.1.16变体的病毒学特征。 柳叶刀感染DIS 2023; 23:655-6。 8。 CDC。 covid数据跟踪器:变体比例。 2023。 9。 2023。Yamasoba D,Uriu K,Plianchaisuk A等。SARS-COV-2 OMICRON XBB.1.16变体的病毒学特征。柳叶刀感染DIS 2023; 23:655-6。8。CDC。 covid数据跟踪器:变体比例。 2023。 9。 2023。CDC。covid数据跟踪器:变体比例。2023。9。2023。(2023年8月31日访问,请访问https://covid.cdc.gov/covid-data-tracker/#variant-proportions。)跟踪SARS-COV-2变体。2023年8月30日在https://www.who.int/activities/tracking-sars-cov-2-ariants访问。)10。CDC。 更新SARS COV-2变体BA.2.86。 2023。 (2023年8月30日访问,https://www.cdc.gov/respiratory-viruess/whats-new/covid-19-variant-2023-08-08-30.html。) 11。 协变量。 变体/突变的概述。 2023。 (2023年8月18日访问,https://covariants.org/variants。) 12。 Lasrado N,Collier A-R,Hachmann N等。 SARS-COV-2 OMICRON子变量BA.2.86中和中和逃脱。 Biorxiv 2023:2023.09.04.556272。 https://doi.org/10.1101/2023.09.04.556272。CDC。更新SARS COV-2变体BA.2.86。2023。(2023年8月30日访问,https://www.cdc.gov/respiratory-viruess/whats-new/covid-19-variant-2023-08-08-30.html。)11。协变量。变体/突变的概述。2023。(2023年8月18日访问,https://covariants.org/variants。)12。Lasrado N,Collier A-R,Hachmann N等。SARS-COV-2 OMICRON子变量BA.2.86中和中和逃脱。Biorxiv 2023:2023.09.04.556272。 https://doi.org/10.1101/2023.09.04.556272。
备注 :考虑戴双层手套。 眼睛防护 :佩戴带侧护罩的安全眼镜或护目镜。如果工作环境或活动涉及多尘、雾气或气溶胶,请佩戴适当的护目镜。如果面部有可能直接接触灰尘、雾气或气溶胶,请佩戴面罩或其他全面罩。 皮肤和身体防护 :工作服或实验室外套。应根据所执行的任务使用额外的连体衣(例如袖套、围裙、长手套、一次性套装)以避免皮肤表面暴露。使用适当的脱衣技术脱下可能被污染的衣物。 卫生措施 :如果在正常使用过程中可能接触化学品,请在工作场所附近提供洗眼系统和安全淋浴。使用时不要进食、饮水或吸烟。重新使用前清洗受污染的衣物。 设施的有效运行应包括审查工程控制、适当的个人防护设备、适当的脱衣和净化程序、工业卫生监测、医疗监督和使用行政控制。
