GWP EF AD E ············································ (1) 式中: E —— 每功能单位或单元过程的温室气体排放量,以二氧化碳当量(CO 2 e)表示; AD —— 温室气体活动数据,单位根据具体排放源确定; EF —— 温室气体排放因子,单位与活动数据的单位相匹配; GWP —— 全球变暖潜势,以政府间气候变化专门委员会(IPCC)最新发布数据为准。
掺杂氮的碳量子点是通过一步大气压微质量工艺合成的。使用一系列的光学和化学测量以及通过理论计算来研究观察到的光致发光发射及其与氮掺杂的关系。氮掺杂到核心和氧基团的表面状态的功能化产生了杂种结构,该结构造成了量子的发光量高达33%。载体乘积被视为量子产率中的阶梯状增强。对可见光发射的分析表明,发射的大部分源自表面状态,而不是由于量子点核心内的重组而引起的。表面官能团的作用在确定光学特性中的量子确定性上是主要的。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
涡度相关法直接测定的是净生态系统碳交换(Net Ecosystem Exchange, NEE)。监测样地的碳汇 为一定时期净生态系统碳交换(NEE)累加值的负值,即净生态系统生产力(NEP)。当NEP为正值时, 表示监测区域为碳汇;当NEP为负值时,表示监测区域为碳源。
1)Kantor Ed等。从1999 - 2012年开始,美国成年人的处方药使用趋势。JAMA 2015; 314:1818-1831。 2)Vaezi MF等。 质子泵抑制剂治疗的并发症。 胃肠病学2017; 153:35-48。 3)Malfertheiner P等。 质子泵抑制剂:了解并发症和风险。 nat Rev胃肠肠肝素2017; 14:697-710。 4)Moayyedi P等。 质子泵抑制剂的安全性基于接受利伐沙班或阿司匹林的大型,多年的随机试验。 胃肠病学2019; 157:682-691.e2。 5)Freedberg de等。 长期使用质子泵抑制剂的风险和好处:美国胃肠道学会的专家审查和最佳实践建议。 胃肠病学2017; 152:706 - 715。 6)Xie Y等。 所有导致死亡率的估计值,并导致与质子泵抑制剂相关的特定死亡率:同类研究。 BMJ 2019; 365:L1580。 7)Lo Ch等。 质子泵抑制剂与全因和特定原因死亡率的关联。 胃肠道2022; 163:852-861。 8)Targownik LE等。 AGA临床实践更新质子泵抑制剂:专家评论。 胃肠病学2022; 162:1334-1342。 9)iijima K等。 日本男性在20年内胃酸分泌的时间序列分析。 J Gastroenterol 2015; 50:853-861。 10)Fujiwara Y等。JAMA 2015; 314:1818-1831。2)Vaezi MF等。质子泵抑制剂治疗的并发症。胃肠病学2017; 153:35-48。3)Malfertheiner P等。质子泵抑制剂:了解并发症和风险。nat Rev胃肠肠肝素2017; 14:697-710。4)Moayyedi P等。质子泵抑制剂的安全性基于接受利伐沙班或阿司匹林的大型,多年的随机试验。胃肠病学2019; 157:682-691.e2。5)Freedberg de等。长期使用质子泵抑制剂的风险和好处:美国胃肠道学会的专家审查和最佳实践建议。胃肠病学2017; 152:706 - 715。6)Xie Y等。所有导致死亡率的估计值,并导致与质子泵抑制剂相关的特定死亡率:同类研究。BMJ 2019; 365:L1580。7)Lo Ch等。质子泵抑制剂与全因和特定原因死亡率的关联。胃肠道2022; 163:852-861。8)Targownik LE等。AGA临床实践更新质子泵抑制剂:专家评论。胃肠病学2022; 162:1334-1342。9)iijima K等。日本男性在20年内胃酸分泌的时间序列分析。J Gastroenterol 2015; 50:853-861。10)Fujiwara Y等。日本人口中GERD的流行病学和临床特征。J Gastroenterol 2009; 44:518-534。11)Miyamoto M等。连续的质子泵抑制剂治疗可减少日本粗糙区域的胃肠道出血和相关死亡。J Gastroenterol Hepatol 2012; 27:372-377。12)Iwakiri K等。基于证据的胃食管食管反射氏病2021。J胃肠肠肠肠肠; 2022; 57:267-285。13)Watanabe K等。用Vonoprazan vs质子泵抑制剂抑制有效的酸与艰难梭菌感染没有更高的关联。AM J Gastroenterol 2021; 116:1632-1637。14)由日本胃肠病学学会编辑:胃食管反流病(GERD)临床指南2021(修订版第3版),东京Nankodo,2021年。
1) 计算权重在软件中可选择熵值法、层次分析法等计算方法; 2) 也可对定性指标进行权重计算。 d) 综合评价 — TOPSIS 分析。 根据软件运行结果,选择评价对象与最优方案接近程度最大的值,该值越大说明越接近最优方案 (系统会根据值的大小自动排序)。
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
•如果您使用的是Winmostar V11.5.0或更高版本,并且使用64位环境,请安装和配置Cygwinwm 2023/04/05或更高版本。
n,通过直接碳化制备具有介孔结构的杂种掺杂的活性污泥生物炭,然后通过腌制修改将其应用于非含锂氧气电池的正极电极。其在阴极中的应用可以以200 mA/g的电流密度提供7888 mAh/g的特定容量。锂氧电池的放电过程将产生