体现的碳被认为是与建筑有关的温室气体(GHG)排放的主要贡献者。为了响应,已经提出了雄心勃勃的目标,以减少建筑环境中的具体碳,包括“净零具体碳”的抽吸。这项研究使用生命周期评估(LCA)方法来探索澳大利亚多层办公大楼中可行的体现碳减少的大小。它将典型的建筑与更雄心勃勃的设计场景进行了比较,以确定在当前情况下净零碳体现的碳以及设计,材料和选择性决策如何影响这一点。结果表明,雄心勃勃的设计和物质变化,包括完整的木材结构,混合木材 - 铝铝式外观,还原的柱网格,稻草绝缘等,可实现17-45%的前期碳减少。然而,减少的大小受到材料数据源和方法论的高度影响。净零体现的碳是可以实现的,尽管只是暂时持续19年。为了响应,我们提出了一个新的术语“时间净零体现的碳”,以确定建筑物生命周期期间不再被视为临时碳汇的时间点。本文以透明度和度量的可靠性,对一致的测量和基准测试的方法以及实现大型实施碳减少的挑战的需求,以指标的透明度和度量的可靠性,需要一致的方法来结束。
•案例研究区域和欧洲一级的生活实验室•确定改编和保护的主要社会经济和政治因素,障碍和促成者•共同开发社会经济可行的政策建议,以详细保护POGFS
一直小于所需的坍落度流动度,即 650 毫米。通过使用 5%、9%、13% 和 17% 的高效减水剂,CBA10、CBA20、CBA30 和 CBA40-SCC 的坍落度流动度均在所需的范围内(EFNARC,2005)。随着 CBA 含量的增加,坍落度流动度降低,这是因为 CBA 的孔隙率越高,CBA 含量越高,饱和水越多。所取得的结果表明,与对照混合物相比,CBA 结构具有粗糙的形式,骨料之间的颗粒间磨损减少。其他研究人员也观察到了这种趋势(Aswathy 和 Mathews,2015)。在局部偏高岭土和 CBA 的联合使用中,随着 MK 和 CBA 的数量增加,需要更多的 SP 来满足所需的坍落度流动度范围。最大添加量为22%的SP可满足MK20CBA40混合料的坍落流动度要求。
用于食品,饲料,化学和能源市场的生物质应以可持续的方式生产。这意味着生物质的生产应遵循最佳的环境,社会和经济实践。具有生物多样性或富含碳的区域,可保护受威胁或脆弱的物种或其他生态或文化重要性的区域,需要保护,不应降解或破坏生物质生产。国际可持续性和碳认证(ISCC)认证系统的目标是为不同种类的生物量及其产品的可持续种植,加工和使用做出贡献。因此,ISCC有助于减少环境影响,保护生物多样性和碳库存,更有效的资源使用和气候弹性。
化学工程系拉瓦尔魁北克大学,QC G1V 0A6加拿大摘要:塑料废物的管理是当今最紧急,最重要的全球问题之一。从历史上看,废物塑料主要被丢弃,机械回收或焚化以产生能源。然而,这些方法通常依赖于热过程,例如传统的热解,这些热解是能量密集型和不可持续的。在这个MinireView中,我们讨论了通过光催化,电解和微波辅助的热解过程对废物塑料化学升级的一些最新进展和未来趋势,这是对常规热反应的更友好的替代方法。我们通过利用替代能源来突出显示不同类型的塑料废物的转化如何产生增值产品,例如燃料(H 2和其他含碳的小分子),化学原料和新功能化的聚合物,这可以为更可持续和循环经济带来更大的可持续性和循环经济。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
RMIT的ARC Biosolids Transformation Center副主任Kalpit Shah教授负责共旋溶式多饲料(食品,花园和生物固体),以生产富含碳的生物炭。使用RMITS获得专利的Pyroco技术,一种流化的床热交换器生产生物炭,可显着改善热量和传质,并且以较低的成本进行。RMIT研究表明,碳纳米材料涂层生物炭可以显着改善碳含量,电池和超电容器性能。他们还发现,生物炭质量很重要,尤其是去除原料收集过程中可能发生的任何杂质(例如二氧化硅)。迪肯大学的电池和创新,由玛丽亚·福赛斯(Maria Forsyth)教授领导,测试了生物素蛋白Na-ion电池。“生物固体衍生的生物壳”的一种与当前的商业阳极材料非常相似,从而验证了其可行性并证明了潜力。
总合成的简短历史。当弗里德里希·沃勒(FriedrichWöhler)首先偶然地发现了一种在1828年不使用生物体中的过程而合成尿素的方法时,化学领域永远改变。1通过反驳生命力理论,该理论是由JönsJacob Berzelius在1809年创建的,并指出,只能通过在生物中使用“生命力”来创建有机化合物,科学家现在有动力发现新的方法可以在先前在自然界中发现的实验室中创建各种化学品。2来自19世纪的一个值得注意的例子是赫尔曼·科尔贝(Hermann Kolbe)的乙酸的合成。从二硫化碳中的这种看似简单的分子的合成标志着合成化学史上的重要时刻。虽然尿素是一种简单的含碳的分子,但乙酸的产生首先证明了产生碳碳键的生存能力。3在同一世纪,可能合成的化合物的复杂性进一步扩展,最著名的是Fischer在1890年的葡萄糖合成。4