该技术以天然抗体生物学为基础,旨在诱导抗体六聚体(六个簇)在与细胞表面的靶标结合后形成。据信这可以增强抗体的自然杀伤能力,同时保留其常规结构和特异性。
本研究提出了像人脑这样的人工智能模型,并将其应用于家庭服务机器人的任务。近年来,许多研究通过深度学习实现了人工智能。当在大型培训数据集上进行许多迭代培训时,深层的网络可以取得良好的结果。但是,单独学习无法通过深度学习来实现类似大脑的智力模型。可以通过两种类型的培训范例来训练人工智能模型。第一个范式是从大量经验中获得常识。获得的共同知识,例如“什么桌子”和“什么是茶”,适用于任何环境。深度学习对于共同的知识获取是有效的,因为可以收集许多有关综合知识的培训数据,并且深度学习的表现取决于培训数据的数量。第二个范式是从一些经验中获取本地知识。当地知识的典型例子是家庭的偏好和习俗。因为它使用了很少的培训数据,因此本地知识不能通过深度学习来有效地促进。要获得类似脑的艺术智能模型,需要用于第二个范式的学习系统。
有趣的是,由于坚固的 TPU 层可确保纤维的完整性,EAF 在 100% 应变下经过 10,000 次循环拉伸后仍能保持稳定的热绝缘性。足够的强度和灵活性使 EAF 适合编织和织成纺织品。因此,用 EAF 制成的毛衣的热导率 (26.9±1.8 mW/m·K) 远低于尼龙 (91.2±1.6 mW/m·K)、聚对苯二甲酸乙二醇酯 (98.3±1.9 mW/m·K) 和羊毛 (38.9±1.1 mW/m·K) 纺织品。在同等隔热性能的情况下,用 EAF 编织的薄毛衣厚度仅为羽绒服的五分之一左右。此外,这种 EAF 编织的薄毛衣还表现出出色的耐洗性和可染性,并且不会明显损害其保暖性,这对于扩大规模至关重要。此外,作者还使用工业剑杆织机来编织
通用人工智能 (AGI) 一直是人类的长期目标,其目的是创造出能够执行人类可以做的任何智力任务的机器。为了实现这一目标,AGI 研究人员从人类大脑中汲取灵感,并寻求在智能机器中复制其原理。受大脑启发的人工智能是从这一努力中产生的一个领域,它结合了神经科学、心理学和计算机科学的见解,以开发更高效、更强大的人工智能系统。在本文中,我们从 AGI 的角度全面概述了受大脑启发的人工智能。我们首先介绍受大脑启发的人工智能的最新进展及其与 AGI 的广泛联系。然后,我们介绍人类智能和 AGI 的重要特征(例如,扩展、多模态和推理)。我们讨论了在当前 AI 系统中实现 AGI 的重要技术,例如情境学习和快速调整。我们还从算法和基础设施的角度研究了 AGI 系统的演变。最后,我们探讨了 AGI 的局限性和未来。
摘要 — 近年来,受脑启发的超维计算 (HDC) 在医疗诊断、人类活动识别和语音分类等广泛应用中展示了良好的性能。尽管 HDC 越来越受欢迎,但其以内存为中心的计算特性使得联想内存实现由于海量数据的存储和处理而能耗巨大。在本文中,我们提出了一个系统的案例研究,利用 HDC 的应用级错误恢复能力,通过电压调节来降低 HDC 联想内存的能耗。对各种应用的评估结果表明,我们提出的方法可以在联想内存上节省 47.6% 的能耗,而准确度损失不超过 1%。我们进一步探索了两种低成本的错误屏蔽方法:字屏蔽和位屏蔽,以减轻电压调节引起的错误的影响。实验结果表明,提出的字屏蔽(位屏蔽)方法可以进一步提高节能效果,最高可达 62.3%(72.5%),准确度损失不超过 1%。
...转至 8 月号的 ABC+D。本月,我们将介绍 2016 年 Wienerberger 砖奖的获奖者,包括 House 1014 — 一个打破西班牙格拉诺列尔斯室内外界限的项目(第 4 页)。我们还将介绍 Artelia 在查塔姆历史造船厂的“海洋指挥”永久展览(第 8 页),在第 12 页,我们将抢先了解 Grant Associates 为马来西亚新城镇 Medini 制定的园艺计划。我们的热门话题专题跟进了 5 月份关于“关门”运动的圆桌讨论,并呼吁零售商通过指定自动入口系统来阻止污染(第 16 页)。Steve Thompson 在第 29 页指出了 BIM 的好处; Ian Hewitt 向我们介绍了尖端设计如何改变教育(第 44 页),而《Advanced Electronics》在第 54 页讨论了误报管理日益增长的重要性。
作者:JA Mattocks · 2020 · 引用 63 次 — Green,《美国稀土矿业的崩溃——以及经验教训》,《国防》。新闻,2019 年。https://www.defensenews.com/opinion/commentary/2019/11/12/the ...
摘要 - 强化学习方法表明,在无人系统中解决具有挑战性的方案的问题。然而,在高度复杂的环境中解决长期决策序列,例如在密集的情况下的连续车道变化和超车仍然具有挑战性。尽管现有的无人车系统取得了长足的进步,但最大程度地降低了驱动风险是第一个考虑。风险意识的强化学习对于解决潜在的驾驶风险至关重要。但是,在无人车辆中应用的现有强化学习算法并未考虑多种风险来源带来的风险的可变性。基于上述分析,本研究提出了一种具有风险感知的加强学习方法,并通过驱动任务分解,以最大程度地减少各种来源的风险。特别是,构建了风险潜在领域,并结合了强化学习以分解驾驶任务。建议的强化学习框架使用不同的风险分支网络来学习驾驶任务。此外,提出了针对不同风险分支的低风险发作抽样方法来解决高质量样本的短缺并进一步提高采样效率。此外,采用了一种干预培训策略,其中人工电位场(APF)与增强学习相结合以加快训练并进一步确保安全。最后,提出了完整的干预风险分类双胞胎延迟的深层确定性政策梯度任务分解(IDRCTD3-TD)算法。两个具有不同困难的场景旨在验证该框架的优越性。结果表明,所提出的框架在性能方面具有显着改善。
摘要:对医学的贡献可能来自不同的领域,其中大多数领域都充满了渴望贡献的研究人员。在本文中,我们的目标是通过机器学习与网络开发的交集做出贡献。我们使用基于JavaScript的库Tensorflow.js,使用从Kaggle获得的神经网络对生物医学数据集进行建模。本研究的主要目的是介绍TensorFlow.js的功能,并在开发为基于Web的应用程序定制的复杂机器学习模型的开发中促进其实用性。我们对三个数据集进行了建模:糖尿病检测,手术并发症和心力衰竭。虽然Python和R当前占主导地位,但JavaScript及其衍生物迅速增长,提供了可比的性能和与JavaScript相关的其他功能。Kaggle是我们下载数据集的公共平台,提供了广泛的生物医学数据集集合。因此,读者可以通过对所兴趣的任何情况进行较小的调整,轻松地测试我们讨论的方法。结果表明,糖尿病检测的准确性为92%,手术并发症几乎为100%,心力衰竭的精度为80%。可能性很大,我们认为这是专注于Web应用程序的研究人员,尤其是在医学领域的绝佳选择。关键字:生物信息学 - 张力流 - JavaScript - 糖尿病 - 药物 - 机器学习 - Angular
允许免费复制本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且副本首页必须注明此声明和完整引文。必须尊重 ACM 以外的人拥有的本作品组成部分的版权。允许摘要并注明出处。若要复制、重新发布、发布到服务器或重新分发到列表,则需要事先获得特定许可和/或支付费用。请向 permissions@acm.org 申请许可。