1 印度哥印拜陀卡尔帕加姆工程学院电子与仪器工程系 2 印度维鲁杜讷加尔卡拉萨林加姆研究与教育学院计算学院 3 印度哥印拜陀拉提南技术校区生物医学工程系 4 印度特里奇 K. 拉马克里什南工程学院电气与电子工程系 5 印度拉贾帕拉亚姆拉姆科理工学院电气与电子工程系 6 印度中央邦博帕尔 VIT 博帕尔计算机科学与工程学院 7 印度维鲁杜讷加尔卡拉萨林加姆研究与教育学院电子与通信工程系 8 埃塞俄比亚技术大学电气与电子技术系
量子启发式元启发法是一种将量子力学原理融入使用非量子机器的经典近似算法的求解器。由于量子原理的独特性,量子现象的启发及其在根本不同的非量子系统(而不是真实或模拟的量子计算机)中的实现方式提出了有关这些算法的设计及其结果在真实或模拟的量子设备中的可重复性的重要问题。因此,这项工作的贡献是回答这些问题的第一步,它试图找出现有文献中应该考虑或调整的关键发现,以构建可用于量子机器的混合或全量子算法。这是通过提出和研究四种启发式、模拟和真实的量子细胞遗传算法来实现的,据作者所知,这些算法是使用具有 32 个量子比特的量子模拟器和采用 15 个超导量子比特的真实量子机器在三个量子领域研究的第一个量子结构元启发法。使用 13 个真实实例将蜂窝网络中的用户移动性管理作为验证问题。使用 9 个比较指标对 6 种不同的算法进行了比较。还进行了彻底的统计测试和参数敏感性分析。实验可以回答几个问题,包括量子硬件如何影响所研究算法的搜索过程。它们还为量子元启发式设计开辟了新的视角。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
最近,受量子退火的启发,许多专门用于无约束二元二次规划问题的求解器已经开发出来。为了进一步改进和应用这些求解器,明确它们对不同类型问题的性能差异非常重要。在本研究中,对四种二次无约束二元优化问题求解器的性能进行了基准测试,即 D-Wave 混合求解器服务 (HSS)、东芝模拟分叉机 (SBM)、富士通数字退火器 (DA) 和个人计算机上的模拟退火。用于基准测试的问题是 MQLib 中的真实问题实例、随机不全相等 3-SAT (NAE 3-SAT) 的 SAT-UNSAT 相变点实例以及 Ising 自旋玻璃 Sherrington-Kirkpatrick (SK) 模型。对于 MQLib 实例,HSS 性能排名第一;对于 NAE 3-SAT,DA 性能排名第一;对于 SK 模型,SBM 性能排名第一。这些结果可能有助于理解这些求解器的优点和缺点。
摘要:生物矿化通过强化软组织为生物体提供承重和保护功能。将生物矿化原理以受控和自组织的方式转化为材料科学是非常可取的,但具有挑战性。自然系统的一个重要教训是,结晶可以通过区室化和模板化来控制。在这里,我们开发了一种结晶技术,该技术基于氧化石墨烯介导的区室化和模板化方解石纳米涂层的棱柱形生长,通过控制离子扩散到微区室中,从而产生多阶段、自组织的结晶,并代表了一种提供连续纳米涂层和增强聚合物表面在接触应力下的摩擦学性能的有效策略。本研究提供了一种自下而上的方法,使用非常基本的生物矿化原理来保护聚合物表面,这对于生物医学应用和以可持续的方式制造高性能功能材料很有意义。■ 简介
I. 引言随着无线网络通过 5G 不断发展,通过使用毫米波频段、大规模 MIMO 和密集小区来提高频谱密度,网络设计人员正在展望 6G 发展路线图,预计社会将更加数据驱动,无线脑机接口、扩展现实和互联机器人将推动 6G 网络处理比 5G 快 10 到 1,000 倍的数据速率 [1]。为了提高频谱效率,设计人员将考虑实施超大规模 MIMO 阵列、创新的空中接口复用技术、更强大的前向纠错编码等技术,甚至在更高载波频率的更宽带宽中部署更高密度的网络。随着频谱效率的提高,6G 系统设计人员将努力提高关键性能指标 (KPI),例如终端和基站的延迟、可靠性和能源效率,同时也会尽量不牺牲一个 KPI 来实现另一个 KPI。 6G 算法的实施可以优化数据吞吐量、频谱效率、用户密度、可靠性和延迟,并在更宽的带宽下运行,这将导致比当前 5G 系统更多的计算量。在基站和蜂窝基础设施中,5G RF 调制解调器信号处理基于经典计算概念,这些概念通常在 ASIC、FPGA 和 GPU/CPU 结构中实现。然而,经典计算性能的改进并没有像过去几年那样呈指数级增长,而是由于晶体管达到原子极限而趋于稳定 [2]。由于高效快速计算结构的设计现在与无线通信竞争,成为许多高容量无线通信系统面临的最重大挑战,因此硅片能否实现实现 6G KPI 所需的高频谱性能、低延迟和高可靠性优化算法值得怀疑。随着 6G 路线图的发展,量子计算是一种潜在的宝贵工具,可以解决未来性能、延迟和可靠性之间的权衡。如果量子计算能够为目前限制可实现网络吞吐量的复杂优化问题提供最佳算法,那么频谱效率将受益匪浅。能够进行量子信息处理的众多硬件平台可以与其他可扩展技术(如毫米波和小型蜂窝)相结合,进一步提高频谱效率。由于量子力学的线性,量子计算从根本上受限于可逆操作,这些操作不会散发热量,除了计算的初始化和读出阶段。虽然嘈杂的量子计算具有不可逆性元素,但从长远来看,量子计算原则上可以达到任意低的功耗,而如果以传统方式执行,这些计算将耗电。在过去几年中,由于纳米技术和工程技术的进步,现实世界的量子计算机已经可以商业化使用。对于无线网络,最近的研究首先利用了量子退火器,这是一种模拟量子计算处理器,并展示了集中式无线接入网络(C-RAN)中基于量子的多输入多输出(MIMO)检测器 [3] 和基于量子的低密度奇偶校验(LDPC)错误控制解码 [4] 的良好结果,为如何使用机器和基线性能指标提供了指导。在无线网络中,存在代表性的优化问题,包括但不限于先前研究的应用,这些问题受到众所周知的吞吐量和复杂性之间的传统权衡,其中最佳求解器是已知的,但考虑到可用的硬件和处理时间限制,实际实施起来非常困难。我们期望克服
图 1. 生物启发式 2D 视觉系统。生物视觉神经网络的基本组成部分,a) 眼睛可实现生物视觉,b) 大脑中的视觉皮层可实现生物学习。c) 眼睛中的光感受器可实现光传导和适应。视杆细胞可实现暗视,而视锥细胞可实现明视。d) 突触增强或减弱以进行学习或遗忘,例如,当突触前神经元释放谷氨酸神经递质时,通过控制突触后神经元中的 AMPA 受体数量来实现学习或遗忘。e) 示意图和 f) 人工视觉系统的假彩色显微镜图像,该系统由集成有可编程背栅堆栈的 9×1 2D 光电晶体管阵列组成。该平台可实现光传导、视觉适应、突触可塑性、直接学习、无监督再学习以及利用遗忘在动态噪声下学习等功能。 g) 传输特性,即在黑暗环境中不同漏极偏压(𝑉𝑉 𝐷𝐷𝐷𝐷 )下源极至漏极电流(𝐼𝐼 𝐷𝐷𝐷 )随背栅极电压(𝑉𝑉 𝐵𝐵𝐵 )变化的特性,h) 在蓝色发光二极管(LED)不同照明水平下的光转导,i) 光增强引起的学习或设备电导(𝐺𝐺 )的增加,以及 j) 在代表性 2D 光电晶体管中,在 𝑉𝑉 𝐵𝐵𝐵𝐵 = 0 V 时测得的电抑制引起的遗忘或 𝐺𝐺 的减少。
及早发现患者生物信号中的恶性模式可以挽救数百万人的生命。尽管基于人工智能的技术在稳步改进,但这些方法的实际临床应用大多局限于对患者数据的离线评估。先前的研究已将有机电化学器件确定为生物信号监测的理想候选。然而,它们在实时模式识别中的应用从未得到证实。在这里,我们制作并表征了由有机电化学晶体管组成的受大脑启发的网络,并使用储层计算方法将它们用于时间序列预测和分类任务。为了展示它们在生物流体监测和生物信号分析中的潜在用途,我们对四类心律失常心跳进行了分类,准确率为 88%。这项研究的结果为生物相容性计算平台引入了一种以前未探索过的范例,并可能有助于开发能够与体液和生物组织相互作用的超低功耗硬件人工神经网络。
鉴于人们对维持战术 SDA 的持续兴趣,太空传感器作为 SOSI 网络的组成部分,是一项不可或缺的资产。然而,太空传感器硬件和传感器轨道的设计空间巨大而复杂。只要有合适的目标函数来评估太空传感器设计的性能,就可以使用元启发式优化技术来遍历传感器设计空间。基于信息的传感器任务分配方面的先前工作可以提供与 SDA 相关的传感器性能指标,如参考文献 [13、12、20、14] 所示。针对 RSO 目录的传感器网络任务分配提取了有关传感器观察目标和估计其状态的能力的有用信息。将基于信息的传感器任务分配与元启发式优化相结合,可以为即将到来的 SDA 制定高性能的太空传感器星座设计。
幸运的是,麦克斯韦方程从亚原子长度尺度到银河系长度尺度都是精确的。在真空中,它们已被证实具有极高的精度(见第 1.1 节)。此外,自 20 世纪 60 年代以来的几十年里,麦克斯韦方程已经能够得到许多复杂结构的数值解。这种用数值方法求解麦克斯韦方程的领域被称为计算电磁学,本课程后面将对此进行讨论。现在有许多商业软件可以高精度地求解麦克斯韦方程。因此,如今的设计工程师不需要更高的数学和物理知识,只要学习如何使用这些商业软件就可以获得麦克斯韦方程的解。这对许多设计工程师来说是一个福音:通过运行这些软件并进行试错,就可以设计出精彩的系统。在实际制造硬件之前使用模拟进行电磁设计的艺术被称为虚拟原型。
摘要 - 幕后(BTM)光伏电池系统的经济潜力在很大程度上取决于电池的发货方式。不同的效用率,系统大小,生成和负载填充物都需要不同的调度策略。本文介绍了价格信号调度,这是一种用于自动经济派遣的新算法,用于使用24小时的PV和负载预测,退化数据和公用事业率。该算法与系统顾问模型(SAM)工具集成在一起,并通过非线性通用电动机电池模型进行了测试。价格信号在需要收费管理和能源套利之间保持平衡的情况下,并且在电池降解会施加显着费用的情况下,Prictals Dispaths Pristals优于SAM的现有算法。索引项 - Solar Plus存储,电池,电池调度,系统顾问模型,SAM,幕后