我们需要的第一个条件是H(可允许的)是可接受的启发式方法。可接受的启发式方法是从未高估实现目标的成本的启发式方法。可接受的启发式方法本质上是乐观的,因为他们认为解决问题的成本比实际的要少。一个明显的启发式启发式的例子是我们用来进入布加勒斯特的直线距离H SLD。直线距离是可以接受的
异常值检测是一项经典且重要的技术,已用于医疗诊断和物联网等不同应用领域。最近,基于机器学习的异常值检测算法,例如一类支持向量机(OCSVM)、隔离森林和自动编码器,在异常值检测方面表现出色。在本文中,我们彻底摆脱这些经典学习方法,提出了一种基于超维计算(HDC)的异常值检测方法 ODHD。在 ODHD 中,异常值检测过程基于 PU 学习结构,其中我们基于正常样本训练一类 HV。此 HV 表示所有正常样本的抽象信息;因此,任何相应 HV 与此 HV 不同的(测试)样本都将被视为异常值。我们使用六个不同应用领域的数据集进行了广泛的评估,并使用三个指标(包括准确率、F1 分数和 ROC-AUC)将 ODHD 与 OCSVM、隔离森林和自动编码器等多种基线方法进行了比较。实验结果表明,对于每个指标,ODHD 在每个数据集上的表现都优于所有基线方法。此外,我们对 ODHD 进行了设计空间探索,以说明性能和效率之间的权衡。本文提出的有希望的结果为传统异常值检测学习算法提供了一种可行的选择和替代方案。
摘要:基于规则的微电网调度策略在过去二十年中受到了广泛关注。然而,最近的大量文献已确凿地表明,在优化微电网规模的同时,优化运营调度具有诸多好处。这通常被称为微电网设计和调度协同优化 (MGDCO)。然而,据可查明,文献中所有现有的 MGDCO 模型都考虑了 24 小时解析的日前时间范围,以实现相关的最佳能源调度过程。也就是说,在更广泛的相关文献中,通常没有关于多日时间范围内的智能、前瞻性能源调度策略。为此,本文介绍了一种新颖的 MGDCO 建模框架,该框架将基于套利感知线性规划的多日能源调度策略集成到基于元启发式的标准微电网投资规划流程中。重要的是,该模型通过生成考虑三天内情景的最佳调度解决方案,有效地延长了微电网投资规划问题中主流能源调度优化的时间范围。基于从测试案例微电网获得的数值模拟结果,验证了所提出的基于优化的调度策略在微电网规模确定过程中的有效性,同时保留了计算的可处理性。具体而言,将使用制定的 72 小时调度策略的所提出的投资规划框架与照常的 MGDCO 方法进行比较,结果表明它可以将微电网的全寿命成本降低高达 8%。所提出方法的优异性能在很大程度上可归因于有效利用了电表后锂离子电池存储,从而提高了整体系统的灵活性。
本文探讨了一种受大脑启发的进化优化算法设计方法。该方法被称为冲突监控优化,其灵感来自大脑中的两个相关过程,即冲突监控和恐惧处理系统。首先,讨论了优化元启发式算法的当前问题并解决了挑战。随后,本文从三个不同方面简要回顾了研究人员在大脑危险处理(恐惧)系统方面的工作。然后,推导并检验了基于恐惧系统模型的模型。接下来,前扣带皮层在信息冲突监控中的作用被用作对所提算法的认可印章。最后,对最终确定的算法进行了修改,采用突变参数来强化模型的进化方面。在提出任意子程序后,使用 20 个维度长度为 3、10 和 50 的基准函数检验了所提出的算法。将评估结果与众所周知的元启发式算法进行了 50 次不同的运行比较,然后讨论了其在不同函数类型上的有效性。
1 宝鸡文理学院计算机科学系,宝鸡 271000,中国 2 达米埃塔大学计算机系,达米埃塔 34511,埃及 3 伊斯坦布尔医学大学统计学系,伊斯坦布尔,土耳其 4 中南大学资源与安全工程学院,长沙 410083,中国 5 维新大学研究与发展研究所,岘港 550000,越南 6 安巴尔大学计算机科学与信息技术学院计算机科学系,拉马迪,伊拉克 7 吕勒奥理工大学土木、环境与自然资源工程,吕勒奥 97187,瑞典 8 同德唐大学土木工程学院,胡志明市,越南 9 同德唐大学土木工程学院土木工程可持续发展研究组,胡志明市,越南 10 德克萨斯 A&M 大学生物与农业工程系,德克萨斯州大学城77843-2117,美国 11 Zachry 德克萨斯 A&M 大学土木工程系,德克萨斯州大学城 77843-2117,美国
图 3 (a) 与 ICS 算法相比,探照灯程序的步骤和输出的说明。灰色体素是探照灯方法中的搜索球中心体素,也是 ICS 算法中的起始体素。此示意图中探照灯的半径是一个体素,探照灯球的信息(每个球体用特定颜色表示)被分配给球体中心的体素,也就是说,输出图中的每个体素都具有与其搜索球相同的颜色(信息)。另一方面,ICS 方法的输出是一组通过数据驱动的启发式方法从起始体素扩展而来的聚类。每个聚类的信息都用特定的颜色表示。(b) 左:ICS 创建的重叠聚类的示例说明。右:单独描绘的相同聚类。黑点表示的体素是起始体素 vs,根据判别分析启发式方法进行扩展,从而为每个聚类得出特定的判别分数
本文讨论了在启发式游戏中设计和使用人工智能作为中学生英语教学的一部分的经验。现代世界需要教育环境的转变、教育的对话化,从而使学生能够发展元学科能力(创造力、批判性思维、有效沟通的能力等)。对话式教育的方法之一是使用启发式学习,特别是启发式游戏。在启发式游戏的设计和实施中引入人工智能可以减少教师备课的时间,并提高学生学习过程中的积极性和参与度。关键词:人工智能;启发式学习;启发式游戏;对话式教育;元主体能力。
由于概括和建模一系列大脑信号的复杂性,发现感官残障人士的情绪仍在继续挑战。因此,使用大脑 - 计算机界面技术来研究基于大脑信号的人的情绪和行为。情绪分析是一种广泛使用且可靠的数据挖掘分析方法。它提供了一个绝佳的机会,可以监视,评估,确定和理解消费者对产品或服务的情感。然而,即使以前的研究已经提出了使用机器学习方法对感官残障人士的情绪分类,但尚未评估视觉症患者的情绪识别模型。因此,这项研究引入了一种新的SALP群算法,该算法具有深层的基于神经网络的文本情感分析(SSADRNN-TEA)技术,该技术针对残疾人。SSADRNN-TEA技术的主要目的是专注于对社交媒体内容中存在的情绪的检测和分类。在这项工作中,SSADRNN-TEA技术经历了预处理,以使输入数据与处理和BERT单词嵌入过程的后一个阶段兼容。此外,还利用了深层复发神经网络(DRNN)模型。最后,SSA被利用以最佳调整DRNN超参数。广泛的实验涉及模拟SSADRNN-TEA方法的实时性能。实验值揭示了SSADRNN-TEA技术在几个评估指标方面的性能提高。
摘要 — 量子密钥分发 (QKD) 网络有可能在不久的将来得到广泛部署,为数据通信提供长期安全性。鉴于高昂的价格和复杂性,多租户已成为 QKD 网络运营的一种经济高效的模式。在这项工作中,我们专注于解决 QKD 网络的在线多租户配置 (On-MTP) 问题,其中多个租户请求 (TR) 动态到达。On-MTP 涉及调度多个 TR 并将从 QKD 网络派生的不可重复使用的密钥分配给多个 TR,其中每个 TR 可被视为具有专用密钥需求的高安全性需求组织。量子密钥池 (QKP) 构建在 QKD 网络基础设施上,以提高密钥的管理效率。我们使用不同的图像为 QKP 的密钥资源和 TR 的密钥需求建模。为了实现高效的 On-MTP,我们对基于启发式和强化学习 (RL) 的 On-MTP 解决方案进行了比较研究,其中提出了三种启发式方法(即基于随机、拟合和最佳拟合的 On-MTP 算法),并引入了 RL 框架来实现 On-MTP 算法的自动训练。比较结果表明,在经过足够的训练迭代后,基于 RL 的 On-MTP 算法在租户请求阻止概率和密钥资源利用率方面明显优于所提出的启发式方法。
决策的定义 184 经典决策理论 185 规范决策模型 185 描述决策模型 187 启发式和偏见 189 信息处理框架 189 启发式的使用 192 获取和使用线索的启发式 192 假设生成中的启发式 193 假设评估和选择中的启发式 194 行动选择中的启发式和偏见 195 自然决策 196 基于技能、规则和知识的任务绩效 198 自然决策的其他观点 200 现实世界决策的综合模型 202 改进人类决策 204 重新设计以支持绩效 205 培训 205 决策辅助 207 问题解决 211 问题解决的特征 212 问题解决中的错误和偏见212