抽象的空间环境对于重力(重力修饰,水分布),辐射(突变增强子),光谱状态和温度不是最佳的植物生长和存活而言是极端的。光合微生物是一种可预见的解决方案,用于支持封闭环境中的植物发育,生长和胁迫耐受性,例如为空间定植设计的植物。的确,光合微生物被称为二级代谢产物(外多糖,吲哚生物碱,肥料),能够影响植物刺激。研究其能力,应用方法和太空农业的最佳菌株可能会导致开发一种可持续且有效的食品生产方法。此外,由于这些微生物也可以用于生产氧气和回收废物,从而增加了对封闭环系统的兴趣。在这篇评论中,我们概述了有关现有生物刺激物,其影响和应用的当前知识状态,以及光合微生物在封闭环境中生命的潜力。
主要在肝脏中表达。TDO也可以存在于其他细胞类型中的神经元中。3 - 5此外,较小的kynurenine是由吲哚胺二氧酶(IDO)酶产生的,该酶存在于人体的各个部位。6在弹性信号(例如白细胞室)中增加水平可以激活IDO酶,而诸如皮质醇(Cortisol)等应激激素可以激活TDO酶。7 kynurenaine水平受到我们的饮食摄入,TDO和IDO活性,应力激素以及弹性信号的影响。kynurenine有两个主要途径:即通过kynurenine氨基转移酶(KAT)形成雌二酸,或通过kynureninase和OR/kynurenine 3-单发糖酶(KMO)形成3-羟基氰酸酯。8 Kynurenine途径在神经系统疾病的发展中起着至关重要的作用,包括阿尔茨海默氏病,9个帕金森氏病10
虽然植物是宝贵天然产物的丰富来源,但生产这些产品用于商业应用往往具有挑战性。通常有机合成对于可行的商业产品来说过于昂贵,并且生物合成途径通常非常复杂,以至于将它们转移到微生物中并非易事或不可行。对于不适合农业生产天然产物的植物,毛状根培养物为生产平台提供了一个有吸引力的选择,该平台提供遗传和生化稳定性、快速生长和无激素培养基。代谢工程和合成生物学工具在设计毛状根以及生物反应器技术方面取得的进展已达到该技术的商业应用即将实现的地步。我们讨论了毛状根的不同应用。我们还以理解长春花毛状根中萜类吲哚生物碱途径的进展为例,说明了途径发现和途径工程方面的进展和挑战。
摘要 马达加斯加长春花(Catharanthus roseus)属于夹竹桃科。这种药用植物原产于马达加斯加,可生产许多重要药物,包括单萜吲哚生物碱 (MIA) 长春新碱和长春花碱,用于世界各地治疗癌症。在这里,我们提供了一个新版本的 C. roseus 基因组序列,该序列是通过结合 Oxford Nanopore Technologies 长读和 Illumina 短读获得的。这个更连续的组装由 173 个支架组成,总长度为 581.128 Mb,N50 为 12.241 Mb。使用公开的 RNAseq 数据,预测并功能注释了 21,061 个蛋白质编码基因。总共 42.87% 的基因组被注释为可转座因子,其中大多数是长末端重复序列。随着对 MIA 产生植物基因组的了解日益增多,这个更新版本应该会简化进化研究,从而更好地了解 MIA 生物合成途径的进化。
我们在此报告中的近红外(NIR) - 发光蛋白质复合物与共轭聚合物。我们已经发现,NIR区域中的固态发光可以从由硼偶氮苯复合物组成的一系列共轭聚合物中获得。我们在本文中证明了蛋白质分子可以通过与含硼偶氮苯的共轭聚合物的吸附来修饰,仅通过在水缓冲液中混合并随后用过滤纯化,然后冷冻干燥。修饰的蛋白质复合物可以在缓冲液中表现出NIR发射和高色散性。特别是,与吲哚羟氨酸绿(ICG)相比,这是一种常规的衰老染料染料,聚合物修饰的蛋白质复合物显示出对光漂白的耐药性。最后,通过将脂肪酶用作支架,我们证实了在聚合物修饰后可以检测到酶促活性。关键字:共轭聚合物;近红外发光;唑苯;蛋白质复合物
摘要:eumelanins是通过其自然前体的氧化聚合获得的天然和合成色素的家族:5,6-二羟基吲哚和其2-羧基衍生物(DHICA)。同时存在离子和电子电荷载体,使这些颜料有望在生物电子中应用。在这项计算研究中,考虑到其许多自由度之间的相互作用,我们构建了Dhica黑色素的结构模型,然后我们检查了代表性低聚物的电子结构。我们发现,沿聚合物链的非呈偶极子将该系统与常规聚合物半导体区分开来,确定其电子结构,对氧化和电荷载体的定位。我们的作品阐明了Dhica黑色素以前未被注意到的特征,不仅与它的根本清除和光保护特性相吻合,而且还开辟了对这类材料中理解和调谐电荷传输的开放新观点。
AIM:升高的炎症信号传导已显示在糖尿病肾脏疾病(DKD)中起重要作用。我们以前开发了一种新的抗炎化合物LG4。在本研究中,我们检验了以下假设:LG4可以通过抑制炎症并确定基本机制来预防DKD。方法:使用链蛋白酶诱导的1型糖尿病小鼠开发DKD并评估LG4对DKD的影响。为了确定LG4的潜在靶标,合成了与生物素连接的LG4并进行蛋白质组微阵列筛选。在HG挑战的SV40MES13细胞中研究了LG4的细胞机制。结果:尽管LG4治疗对体重和血糖水平没有影响,但它明显逆转了高血糖诱导的T1DM小鼠肾脏的病理变化和纤维化。重要的是,通过LG4处理,通过NF-κB激活和TNFα和IL-6过表达证明了高血糖诱导的肾脏炎症。蛋白体微阵列筛选表明JNK和ERK是LG4的直接结合蛋白。lg4显着降低了HG诱导的JNK和ERK磷酸化以及随后在体内和体外的NF-κB激活。此外,LG4与JNK或ERK抑制剂的存在中没有在HG挑战的中敏细胞中显示出进一步的抗炎作用。结论:LG4通过抑制ERK/JNK介导的糖尿病小鼠的炎症表现出重新保护活性,表明LG4可能是DKD的治疗剂。关键字:吲哚-2-羧酰胺衍生物,糖尿病肾脏疾病,炎症,MAPK,NF-κB
肠道微生物群调节人体中的各种生理功能,包括消化,免疫调节,肠道屏障维持,甚至神经系统的活动。肠道微生物与大脑之间的双向通信(称为猪gut轴)对于平衡的代谢至关重要。最近的研究表明,肠道微生物群代谢产物,例如短链脂肪酸,吲哚衍生物,神经递质和其他生物活性化合物,可以对神经发生,髓鞘形成和轴突再生产生积极影响,从而在神经疗法和神经疗法的治疗策略中可能产生潜在的潜在。尽管对肠道微生物群代谢产物的研究越来越多,但了解它们在神经保护机制中的作用仍然有限。本文回顾了最著名的肠道微生物群代谢产物的分类,生产,功能和治疗潜力,及其对神经发生,突触发生,能量代谢,免疫调节和血脑屏障完整性的影响,将为肠道菌群的研究提供基础。
bacillus proteyticus mitwpub1是潜在的生物表面活性剂(BSS)的生产国,并且还发现该生物体是促进植物生长性状的生产国,例如氰化氢和吲哚乙酸(IAA),以及磷酸盐的溶液剂。据报道,BSS是两种类别的混合物,即糖脂和脂肽,如薄层色谱和傅立叶转换红外光谱分析所发现的那样。此外,通过液相色谱质谱法半靶向的代谢产物培养揭示了磷脂,脂蛋白,多胺,IAA衍生物和类胡萝卜素的存在。BS显示针对RolfSII的剂量依赖性拮抗活性;扫描电子显微镜在菌丝变形和减少的分支模式方面显示了BS对Rolfsii的影响。体外研究表明,蛋白水解的MITWPUB1及其生物表面活性剂在胸前的种子中的应用可增强种子发芽率。然而,基于木屑载体的生物取消用蛋白水解的mitwpub1及其BS显示出增加的生长参数。成为著名的BS生产商,能够控制植物病原体S. rolfsii的生长。
背景 生长素诱导降解 (AID) 技术可通过化学遗传学控制蛋白水解 [ 1 ]。为了应用 AID,需要通过基因工程将不稳定肽或“降解决定子”标记到目标蛋白上。生长素受体(如 Os TIR1)在相同细胞中外源表达,作为 Skp1-Cullin1-TIR1 (SCF TIR1 ) 泛素连接酶复合物的底物识别亚基发挥作用。生长素(如吲哚-3-乙酸,IAA)作为化学胶水连接 SCF TIR1 泛素连接酶和降解决定子标记蛋白,导致降解决定子标记蛋白快速多泛素化和蛋白酶体降解 [ 1 , 2 ]。 AID 能够快速高效地降解靶蛋白,避免长期沉默或 CRISPR 敲除过程中出现的副作用,并为理解动态生物过程中不同靶蛋白的功能提供了重要的机制见解 [ 3 – 7 ]。然而,一些障碍限制了我们充分发挥 AID 潜力的能力。