摘要 太赫兹 (THz) 超材料因其不寻常的吸收体而被开发用于 THz 传感、检测、成像和许多其他功能。然而,不寻常的吸收光谱会随着不同的入射角而变化。因此,我们设计并制作了一个具有金属-绝缘体-金属 (MIM) 结构超材料吸收体的焦平面阵列,以供进一步研究。使用 THz 时域光谱 (THz-TDS) 测量了入射角从 20° 到 60° 的吸收光谱,实验结果表明吸收光谱随入射角的变化而变化。本研究开发了一个用于提取吸收频率特性的基本分析非对称峰模型,以定量探索吸收体行为随入射角的变化。最好的结果是,使用此峰值模型可以轻松找到与最高吸收相对应的频率。实验数据与非对称峰模型的验证一致。此外,还发现了第二个将参数定量与入射角相关联的模型,可以预测吸收光谱的偏移和变化。根据二次模型推导,预测吸收光谱在特定入射角下具有谷状吸收曲线。所提出的提取方法的基本特征是它可以应用于任何基于物理的 MIM 超材料系统。这种模型将指导 THz 超材料吸收器、传感器、成像器等的设计和优化。
人们正在考虑在下一代光刻节点中使用 Ta 基吸收体的替代品,以减少 3D 掩模效应并通过相位干涉改善图像调制。低复折射率 (n-ik) 材料可以在比传统吸收体所需厚度更薄的情况下提供相移行为,本质上充当衰减相移掩模 (attPSM) 膜。确定 attPSM 吸收体厚度和随之而来的相位需要确定最佳相移掩模反射率。使用高反射率吸收体进行成像可显示出更好的成像性能。吸收体厚度是在干涉效应导致高吸收体反射率的地方确定的。因此,低折射率 (n) 材料是理想的 attPSM 吸收体候选材料。使用维纳边界和有效介质近似 (EMA) 建模确定的低 - n 材料组合使用吸收体反射率在线空间和接触孔图案针对 NILS 和 MEEF 进行优化。使用反射近场强度成像将接触孔最佳厚度的吸收体候选物与传统的 Ta 基吸收体进行了比较。
摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
摘要:宽带长波长红外(LWIR)光吸收体在热发射与成像、红外伪装以及废热和生物热能利用等方面有着重要的应用。然而,宽带LWIR光吸收体的实际应用需要低成本、易于制造且厚度有限的大面积结构。本文报道了一种采用梯度折射率策略设计和制造的超薄、宽带、全向、偏振无关的LWIR光吸收体,该吸收体由阳极氧化铝和高掺杂Si组成。宽带光吸收体在8 – 15 μm波长范围内的平均吸收率高于95%,并且具有宽的入射角和偏振公差。在8 – 15 μm波长范围内,95%以上的光能量被吸收。
提出了一种基于氧化铟锡 (ITO) 超材料的可调谐太赫兹 (THz) 吸收体。通过飞秒激光直接刻蚀制作了具有不同臂长的上层 ITO 十字形超表面。中间介电层厚度仅为 60 μm,使吸收体具有很好的透明性和柔性。实验结果表明,THz 谐振峰在 1 THz 附近具有很高的性能。通过在中间层和 ITO 镜之间设置不同厚度的垫片,提出了一种新型的可调谐 THz 吸收体。其吸收峰频率可在 TE 和 TM 偏振之间从 0.92 到 1.04 THz 连续调节。这种透明 THz 超材料吸收体有望广泛应用于 THz 成像、传感和生物检测等。关键词:可调谐太赫兹吸收体;透明超材料;柔性超材料。 doi:10.3788/COL202018.092403。
THz波段。具体而言,理想的阻抗匹配情况预测吸收效率的上限为50%,其中吸收体的方块电阻是自由空间阻抗的一半(Zo/2)[2]。此外,实现整个THz波段有效带宽覆盖的一个基本标准是自由电子的弛豫时间小于15fs。尽管如此,有证据表明,基于金属、石墨烯和拓扑绝缘体开发的吸收体通常仅在较窄的THz波段范围内实现高吸收,而不是在整个所需带宽内。因此,当前的研究人员在经典直流阻抗匹配模型的指导下,集中精力筛选广泛的候选材料,以解决THz波段有效吸收较窄这一长期存在的问题。
摘要:氧化钇(Y 2 O 3 )因其在各种高强度结构部件、微电子和光电子器件中的潜力而受到关注,但这种有前途的材料的非线性光学研究尚未实施。本文不仅理论计算了Y 2 O 3 的电子能带结构,而且以光纤激光器为平台验证了Y 2 O 3 的光学非线性。同时,通过使用不同厚度的Y 2 O 3 可饱和吸收体,进一步探究了样品厚度对激光性能的影响。结果表明Y 2 O 3 不仅具有良好的光学非线性,而且通过调节Y 2 O 3 的厚度有利于超快光子的研究。因此,Y 2 O 3 可以作为一种潜在的可饱和吸收体候选者进行深入的研究和应用。
非线性光学在激光技术中有着广泛的应用,包括光参量放大、电光开关、倍频和混频。从技术角度来看,研究非线性光学 (NLO) 特性对于设计 NLO 设备和理解控制光与物质相互作用的潜在机制至关重要。超短激光脉冲可以通过利用 NLO 特性、可饱和吸收 (SA) 来产生,因此可饱和吸收体是脉冲激光器中的关键光学元件。半导体可饱和吸收镜 (SESAM) 因其高稳定性而在商业上用作可饱和吸收体,但它具有制造工艺复杂和带宽有限的缺点。1 为了开发超快激光器,需要不同的 NLO 材料
早在1959年,理查德·费曼在题为“底部有足够的空间”的演讲中就提到了层状材料的概念。[1] 然而直到几十年后的今天,我们似乎才通过坚持不懈的努力,对二维材料这个神秘的物种有了更清晰的认识。[2] 对于具有纳米结构的二维材料,在平面上确定传热和电荷时会出现独特的物理奇异性,这使得它们引起了从超快光子学[3–9]电子/光电子器件[10–22]高性能传感器[23–30]生物医学[31–42]到光调制[43–51]等领域的广泛关注。 在过去的几年中,二维材料的整体格局不仅得到了极大的扩展,而且在其开发和应用方面也得到了很大的创新。 其中最引人注目的应用是非线性光学,它掀起了激光创新的狂潮。在众多现有的超短脉冲产生技术中,基于可饱和吸收体(SA)的被动锁模光纤激光器(MLFL)由于具有光束质量好、结构紧凑、成本低廉、兼容性好等优点,成为实现超短脉冲最有效的途径之一。虽然可饱和吸收体的发展经历了染料、半导体可饱和吸收镜(SESAM)等,但自从石墨烯材料的成功制备和应用以来,在光纤激光器中掀起了基于二维材料的可饱和吸收体制备研究的热潮。由于二维材料的光学非线性,基于二维材料的可饱和吸收体可以周期性地调制激光腔内环流光场,引起大量纵模发生相位振荡,从而在时间域上形成有规律的短脉冲串。非线性吸收机理主要由泡利不相容原理引起,使得材料在强光作用下,当有大量电子处于上激发态时,瞬间吸收较小。自石墨烯问世以来,更多的二维材料被认可并在激光领域得到应用。到目前为止,研究热点主要集中在几种代表性材料或与它们相关的一些异质结材料上,包括1)石墨烯;2)拓扑绝缘体(TIs);3)黑磷
学校实验室使用的放射源被认为发射α和γ。描述一个可用于验证放射源发射的辐射类型的实验。所描述的实验应允许您确定辐射强度如何随空气中的距离或合适吸收体的厚度而变化。您的答案应包括: