在过去的三十年中,低维系统从基本和技术的角度引起了越来越多的兴趣,这是由于其独特的物理和化学特性。X射线吸收光谱(XAS)是表征这种系统的强大工具,这是由于其化学选择性和在原子间距离测定中的高灵敏度。此外,该技术可以同时提供有关纳米材料的电子和局部结构特性的信息,这显着有助于阐明其原子结构与其特殊的物理特性之间的关系。本综述提供了XAS的一般介绍,讨论了该技术的基本理论,最常用的检测模式,相关的实验设置和一些互补的相关特征技术(DAFS,EXELFS,PDF,PDF,XES,HERFD XAS,XRS,XRS)。随后将介绍XAS光谱对2D,1D和0D系统的重要应用。选定的低维系统包括IV和III-V半导体膜,量子孔,量子线和量子点;基于碳的纳米材料(外延石墨烯和碳纳米管);金属氧化物膜,纳米线,纳米棒和纳米晶体;金属纳米颗粒。最后,讨论了将XAS应用于纳米结构的未来观点。
研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
相比之下,IRRAS在氧化物和二元组中的应用通常不那么发达了。虽然广泛可用的氧化物粉末吸附剂的实验性IR数据,但这些材料的宏观单晶的10,11 IRRAS数据受到限制。10–13此限制源于电介质的特定光学特性,并阻碍了直到最近氧化物上IRRAS数据的实验记录。金属和半导体之间的关键区别是通过金属电子对电场进行筛选,影响总红外反射率,并引起所谓的表面选择规则,管理金属表面上的IRRAS。2,14该规则规定,对于金属,通常仅具有过渡偶极矩的成分的振动
©2022 Taylor&Francis Group,LLC。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1080/05704928.2022.2156527获得。
时间分辨的吸收光谱分析系统是一种在极短的时间内执行瞬时吸收光谱测量的装置。该系统能够分析溶液,固体,膜等中光反应中反应性中间体的形成和衰减过程。通过使用单次摄像机作为检测器并使用单个镜头,时间分辨的吸收光谱和瞬时吸收时间分辨的光谱图像进行多个波长的时间分辨测量,您可以同时测量,您可以获得不可逆转现象的图像。新开发的高动态范围条纹摄像头C13410-01A被用作检测设备。分钟的瞬态吸收变化也可以在高动力范围内测量高S/N。
审查:“通过诸如价电子(dopingp)等制备中的NIR-VIS-UV吸收光谱培养纳米管的分布”
摘要:瞬态吸收(TA)光谱是确定激发态的能量和动力学的宝贵工具。当泵的强度足够高时,TA光谱包括通常所需的三阶响应和在现场幅度中较高顺序的响应。最近的工作表明,泵强度依赖性的TA测量值允许分开响应顺序,但尚未描述这些较高顺序中的信息内容。我们提供了一个一般框架来理解高阶TA光谱。我们扩展到高阶标准TA的基本过程:地面漂白剂(GSB),刺激发射(SE)和激发态吸收(ESA)。每个顺序介绍了两个新的过程:来自以前无法访问的高度激发态和低阶过程的负面的SE和ESA。我们在每个顺序上显示新的光谱和动态信息,并显示如何使用不同订单中信号的相对符号来识别哪些过程占主导地位。
使用Operando测量单元,在初始充电过程中分析了Li 1.2-X Ti 0.4 Mn 0.4 O 2的O K边缘XANES光谱,这是由于
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2022 Thermo Fisher Scientific Inc.保留所有权利。Teflon是Chemours Company FC,LLC的注册商标。除非另有说明,否则所有其他商标都是Thermo Fisher Scientific及其子公司的财产。AN56369_EN 12/22
摘要 使用紧凑而坚固的宽带微电子 THz 波谱仪在 220-330 GHz 频率范围内进行旋转吸收光谱法,演示了对卤代烃的气体传感。在工业环境中,对卤代烃进行监测是必要的,因为这些化学物质具有毒性、挥发性和反应性,对人类健康和环境构成威胁。在 297 K 和 0.25 至 16 Torr 压力下表征了纯氯甲烷、二氯甲烷、氯仿、碘甲烷和二溴甲烷的吸收光谱。光谱显示了目标卤代烃在 220-330 GHz 频率范围内独特的旋转指纹,并展示了它们在气体传感应用中选择性定量检测的潜力,纯气体的最小检测量为 10 12 –10 13 分子/cm 3 量级,稀释气体的最小检测量为 10-100 ppm 量级,1 个大气压,1 米光程。该研究进一步证明了全电子微型太赫兹波气体传感器的潜力。