摘要:纳米技术是基于植物的疗法的最新方向之一。慢性静脉疾病通常易于长期和侵入性治疗。这项研究的重点是从Sophorae Flos(Se),金缆果(CE)和Ginkgo bilobae Folium(GE)中纳入植物提取物,其中包括PHB和PLGA聚合物的构建,及其物理化学表征作为在复杂的治疗产品开发中可能使用的初步阶段。样品是通过石油 - 水乳化和溶剂蒸发技术制备的,导致悬浮液具有较高的可扩展性,pH值为5.5。ATR-FTIR分析揭示了与碱基成分相同的区域的拉伸振动(O-H,C = O和C-H)在对称和非对称甲基和甲基中的C-H),但转换为高或低的波维因和吸收剂,并强调了提取物/提取物之间的累积的形成。通过XRD分析证实,获得的制剂处于无定形相。AFM分析强调了提取物 - 聚合物纳米成型的形态特征。可以注意到,在基于SE的制剂的情况下,SE-PHB和SE-PLGA组成的主要特性是形成随机大(SE-PHB)和较小的均匀(SE-PLGA)颗粒的形成。此外,在Se-PhB-Plga的情况下,这些颗粒倾向于聚集。对于基于CE和GE的配方,主要的表面形态是它们的孔隙率,通常有小毛孔,但在某些情况下(CE-和GE-PHB)观察到较大的空腔。在以下样品中发现了(8 µm×8 µm)等级处的最高粗糙度值:CE-PHB 此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。 在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。
组装纤维和凝胶[6-11]。中,发现具有相互联系的网络结构的多孔材料和聚合物具有相当高的疏水性和含水性的肿胀特性,这是由于其出色的油选择性,非常高的吸收能力,快速动力学,出色的材料可重复性和增强油回收率[12-18]。最近,由于其高疏水性,油性性和商业供应性,基于PDMS的吸收剂被认为是油吸收的潜在候选者[19]。此外,PDMS已用于选择性地将油和/或有机溶剂分离出来[20]。自Wacker Chemie综合了1950年代的第一个硅和1990年代的学术实验室引入[21,22]以来,PDMS是最广泛使用的有机弹性体使用的最广泛使用的有机弹性体[21,22]。PDMS通常是一种粘弹性,具有生物相容性,化学和机械稳健的材料,具有低玻璃过渡温度,成本效益和良好的可塑性,可确保可接受实际用途[23,24]。Si-O-Si骨架质体赋予PDMS弹性体具有吸引人的特性,例如高柔韧性,无毒性,无易受度,非易受度,热电阻和电阻,并且散装密度较低[25]。PDMS在紫外线照射下表现出高透射率和低吸收,适用于理想的光学应用[26]。由于出色的轮廓精度小于10 nm,因此在微技术和纳米技术中广泛利用PDM [22,27]。实心PDMS对大多数水性试剂和酒精溶剂具有抗性。然而,诸如二甲苯之类的有机溶剂会膨胀这种弹性体[28]。同时,它可以渗透到小的无反应蒸气和气体分子(例如水和氧气)[29,30]。此外,原始PDM的表面表现出低表面张力和能量,并且是疏水性的。可以通过大量引入氧血浆处理的羟基来暂时改变润湿性,但由于链迁移而恢复其疏水性能[31]。PDMS表面可以通过血浆氧合,蛋白质吸附或其他功能化学基团的结合来轻松修饰[32,33]。高电负性也可用于沉积相对于电荷的电解质进行亲水性修饰并实现广泛的电气应用[34]。
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子
铅卤化物钙钛矿表现出一系列对光电应用尤其是光伏应用具有吸引力的性质。这些性质包括易于制造钙钛矿薄膜,该薄膜具有极长的载流子寿命和陡峭的吸收起始点,导致吸收系数 > 10 4 cm − 1 ,仅比带隙高出几个 meV。[1] 在铅卤化物钙钛矿家族中,最佳光电性能出现在约 1.5 至 1.8 eV 的带隙范围内,这对于用作串联或三结太阳能电池中的高带隙吸收剂来说是一个非常有用的范围。[2] 在这个带隙范围内,钙钛矿只有 III − V 半导体可以与之竞争,[3] 但其优势是制造成本明显较低。虽然有许多直接半导体具有良好的吸收率和适合光伏应用的带隙 [4],但很少有半导体像铅卤化物钙钛矿一样具有如此低的非辐射复合损失和如此高的发光量子效率。 [5–7] 这不仅可以在单晶中实现,而且也可以在多晶薄膜中实现。 [8] 这些多晶材料性能良好的一个具体原因是铅卤化物钙钛矿的反键价带会导致浅的本征缺陷 [9],并使铅卤化物钙钛矿家族获得了“缺陷容忍半导体”的称号。 [10,11] 目前该技术有两个主要缺点阻碍其商业化:[12] 一是材料的长期稳定性,二是使用有毒元素铅,但铅对于理解优越的光电特性至关重要 [11] 因此很难替代。目前有各种策略可以替代铅、减少铅或将其安全地包含在薄膜内。[13] 在提高稳定性方面,业界越来越重要的一种主要方法是用无机元素(如铯)取代迄今为止通常使用的有机阳离子甲铵或甲脒。[14] 这里的关键挑战是如图 1a 所示的钙钛矿结构(ABX 3 )必须包含适当大小的 A 位阳离子,以稳定钙钛矿结构核心的 BX 6 八聚体。鉴于 Pb 和 I 或(在较小程度上)Br 的尺寸相对较大,A 位阳离子必须足够大。
高表面积半导体在电子和能量转换中具有多个应用。[1,2]虽然有规定的光伏设备将阳光直接转化为电力,而光化学(PEC)水分裂为利用这种可再生能源提供了替代途径。在PEC细胞中,水在催化金属氧化物界面处分解,以H 2(G)的形式存储化学能。理想的PEC细胞将具有较大的催化表面积,直接电子传输途径和最佳的阳光聚集。[3]多孔纳米结构的半控导管通过增加设备中吸收材料和光散射的量来满足这些要求。[4]然而,介孔无机3D网的制造能够控制几何和内部形态仍然是一个挑战。与传统使用的湿合成路线相比,原子层沉积(ALD)是一种广泛应用于现代电子产品的简单涂层方法。在ALD中,交替的反应物被沉积在基板上,限制了对其表面层的反应。因此,ALD可以用超高精度沉积薄膜。理想情况下,可以制备每一个ALD循环的薄膜,并且通常每循环的膜生长范围在0.01至0.3 nm之间。[5]可以通过简单地增加ALD循环的数量,以更长的沉积时间来制备较厚的层。基于纤维素的材料作为ALD模板具有吸引力,因为可以使用各种结构和表面化学材料。Kemell等。是第一个通过ALD在纤维素过滤纸上进行光催化应用的ALD模板2的模板。[6] Hyde等。在棉花斑块上表征了ALD涂层,涂上Al 2 O 3涂层来调整润湿性,以及Tino X涂层以促进细胞的粘附和生长。[7,8]对于需要孔隙率和高比表面积的应用,纳米纤维素气凝剂提供了一个具有层次 - 层次多孔结构的模板,其中可以在纳米孔中转移平均孔径到微米范围。[9,10],例如,Korhonen等。带有TIO 2的涂层纤维素纳米纤维(CNF)气凝胶,并证明了它们作为湿度传感器和油吸收剂的应用。[11]最近,Li等人。使用CNF Aerogels作为TIO 2的ALD模板,为水分拆分细胞制备毛细管光轴。[3]用毛细管湿润的电极
在本研究中,使用 Aspen Plus 中的速率模型模拟和优化了传统单乙醇胺 (MEA) 吸收工艺中直接从环境空气中捕获二氧化碳 (CO 2 ) 的过程。该工艺旨在从空气中捕获特定量 (148.25 Nm 3 /h) 的 CO 2,该量由潜在应用决定,即从 2.7 MW 电解器的输出 (593 Nm 3 /h H 2 ) 中生产合成甲烷。我们通过对不同参数进行敏感性分析研究了该工艺的技术性能,例如空气湿度、捕获率(定义为工艺过程中捕获的 CO 2 摩尔数与进料流中 CO 2 总摩尔数之比)、贫吸收液和富吸收液的 CO 2 负荷以及再沸器温度,并评估了该系统的能耗和总成本。为了满足标准填料塔的设计要求,富吸收液被循环到吸收器的顶部。本工艺选定 50% 的捕获率作为基准。捕获率较高时,由于解吸器需要更高的蒸汽汽提率,因此捕获每吨 CO 2 所需的能量也会增加;捕获率较低时,由于在给定的 CO 2 产量下需要处理更大量的空气,设备尺寸(尤其是吸收器和鼓风机)也会增加。基准情景下,再沸器负荷为 10.7 GJ/tCO 2 ,电能需求为 1.4 MWh/tCO 2 。吸收器直径和高度分别为 10.4 米和 4.4 米。解吸器相对较小,直径为 0.54 米,高度为 3.0 米。安装在吸收器顶部的洗涤水段将 MEA 损失降低至 0.28 kg/吨 CO 2 。然而,这增加了约 60% 的资本成本,导致在 MEA 基准情景下,二氧化碳捕获成本为每吨二氧化碳 1,691 美元。根据技术经济分析,假设使用非挥发性吸收剂而不是 MEA,从而避免了洗涤水部分,并使用由更便宜的材料建造的吸收塔,每吨二氧化碳的预计成本降低至 676 美元/吨二氧化碳。总成本范围在每吨二氧化碳 273 美元到 1,227 美元之间,具体取决于不同的经济参数,例如电力(20-200 美元/兆瓦时)和热价(2-20 美元/GJ)、工厂寿命(15-25 年)和资本支出(±30%)。为了进一步降低成本,使用在较低液气比下运行的创新廉价气液接触器至关重要。
UDC 66.045.1 Uliev L. M.,瓦西里耶夫 M.答:焦化厂 焦化 产品 加工 过程 的 夹点 集成 简介 . 能源价格上涨迫使能源依赖型国家实现能源供应多元化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每美元0.89千克常规燃料。美国。这一数字目前在欧洲国家中最高。具体来说,波兰的GDP能源强度为0.34千克力。吨 / 美元。美国、德国——0.26、英国——0.23 [1]。降低化工、冶金等行业的能源消耗尤其重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从焦炉煤气中通过有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),含量为(80–90)%。[2]。对所研究过程的数据提取工作已提前完成,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了 17.44 MW 的回收能力以及热电厂(34.78 MW)和冷电厂(33.5 MW)的容量 [3]。介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在先前的化学[5–6]、石化[6–9]和焦化[10–13]行业中的研究中证明了其有效性。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最优重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序[14]设计的给定值与最小温差的成本依赖关系如图1所示。为了经济地优化整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。假设每年有 8000 个工作小时,那么每 1000 立方米 [15] 热能公用事业的价格将为 - 172 美元。美国每 1 千瓦每年。制冷公用事业的费用为 24.5 美元。美国每 1 千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定:
UDC 66.045.1 Uliev L.M.,瓦西里耶夫 M.一个。PINCH — 焦化厂焦化产品加工工艺的集成简介。能源价格上涨迫使依赖能源的国家实现能源供应多样化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每1美元0.89千克常规燃料。美国。这一数字目前是欧洲国家中最高的。具体来说,波兰的GDP能源强度为0.34 kg/t。吨 / 美元。美国、德国 – 0.26、英国 – 0.23 [1].降低化工、冶金等行业的能源消耗尤为重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从直接焦炉煤气中用有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),其含量为(80– 90%!”[2]。先前已从所研究的工艺中提取了数据,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了回收能力为 17.44 MW,热电厂容量为 34.78 兆瓦,冷电厂容量为 33.5 兆瓦 [3]。本文介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在化学[5–6]、石油化工[6–9]和焦炭化工[10–13]领域的研究中证明了其有效性。行业。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最佳重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序 [14] 设计的给定值与最小温差的成本依赖关系如图所示(图1).为了经济地最佳地整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。每 1000 立方米 [15],考虑到每年有 8000 个工作小时,热力设施的价格将为 172 美元。美国每千瓦每年。制冷设施的价格为 24.5 美元。美国每千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定: