本文介绍了 AAPM 的 TG-51 协议的附录,用于确定兆伏级光子束对水的吸收剂量。本附录延续了 TG-51 中规定的程序,但提供了基于蒙特卡罗模拟的光子束的新 k Q 数据,并提出了提高协议实施准确性和一致性的建议。介绍了确定参考点对水的吸收剂量的不确定度预算的组成部分,并讨论了每个组成部分的大小。最后,讨论了 ND,w 系数的实验测定一致性。假设用户已经熟悉 TG-51,预计本附录的实施将很简单。本报告引入的更改通常很小,但新建议可能会导致个别用户的程序更改。预计医学物理学家实施本附录的努力不会很大,可以作为年度直线加速器校准的一部分来完成。 © 2014 美国医学物理学家协会。[http://dx.doi.org/10.1118/1.4866223]
[177 lu] lu- dotatate已被批准用于过度表达生长抑素受体的进行性胃肠道和胃胃肠道神经内分泌肿瘤(GEP-NETS)。可以通过限制器官和肿瘤来量化吸收的剂量,可以通过连续入发现后的闪存后测量177 lu的G-排放量进行测量。这项工作的目的是探索输注后[177 lu] lu- dotatate剂量测定法可以通过预测治疗效率(肿瘤收缩和生存)和毒性来影响临床管理。方法:包括2016年至2022年之间用[177 lu] lu- dotatate治疗的GEP-NET的患者,并包括了接受剂量测定法的患者。使用行星剂量的健康器官(肝脏,肾脏,骨髓和脾脏)计算吸收的剂量,以及基于连续处理后SPECT/CT的局部能量沉积法。每个位点最多5个病变被选择在基线在基线和处理端后3个月收集的图像上进行测量(测量掩盖到生长抑素受体成像摄取)。进行有毒评估,定期监测实验室参数。临床数据,包括死亡时间或进展,是从患者的健康记录中收集的。使用回归模型研究了器官吸收剂量与毒性和肿瘤体积变化的吸收剂量之间的相关性。结果:总共进行了35次剂量学研究,对肝脏中主要是2级(77%)肿瘤和转移酶的患者进行了35次剂量学研究(89%),淋巴结(77%)和骨(34%)和146个病变,分析了1-9个病变:每位患者1-9个病变,大多数是肝脏转移(65%)和25%(25%)。肿瘤吸收的总剂量中位数为94.4GY。在周期之间,肿瘤吸收的剂量显着降低。肿瘤吸收的剂量与肿瘤体积变化显着相关(P,0.001)3MO治疗后,这是一种生存的显着预后因素。毒性分析表明,血液学参数的降低(例如淋巴细胞或血小板浓度)与脾脏或骨髓的吸收剂量之间的相关性。在研究期间,肾脏的平均吸收剂量与肾毒性没有相关。结论:在用[177 lu] lu-葡萄酸盐治疗的GEP NET,肿瘤和
3 英国采纳了国际辐射单位委员会第 90 号报告 (ICRU 2016) 的建议并引入了新的或重新评估的一级标准,自 2019 年 9 月 1 日起对英国国家空气比释动能和吸收剂量一级标准进行了更改。NPL 出版物 IR 55 (Bass et al . 2019) 总结了这些变化以及这些变化对二级标准校准系数的影响。
确定辐射赋予物质的能量是剂量法的主题。如上一章所示,当辐射与材料原子相互作用时,沉积的能量与材料的原子相互作用。赋予的能量负责辐射在物质上引起的影响,例如,温度升高,材料特性的化学或物理变化。通过辐射在物质中产生的几种变化与吸收的剂量成正比,从而导致将材料用作剂量计的敏感部分的可能性。此外,辐射的生物学作用取决于吸收剂量。在剂量法的范围内还定义了与辐射场有关的一组数量。将在本章中显示,在特殊条件下,dosimetric和现场描述数量之间存在简单的关系。因此,剂量法的框架是本章中研究的一组物理和操作数量。
dosimetry是不可或缺的放射性治疗疗法,实现个性化治疗计划并通过计算对器官和肿瘤的吸收剂量来确保患者安全的组成部分。随着治疗性放射性药物场所继续扩展,剂量测定软件已成为优化治疗效果的关键工具。本评论讨论了当前剂量计软件解决方案将来或应有的关键功能。我们强调了对跨平台进行标准化的需求,以支持一致,准确的剂量计算。此外,我们还探索了推进软件的机会,例如合并具有生物有效剂量建模和改善不确定性定量的机会。展望未来,我们主张扩大开放数据集的基础架构,并促进供应商和最终用户之间正在进行的协作,以指导该领域的更大整合和效率。
进行放疗治疗的法律记录是放射治疗处方。由于临床提供者经常使用放射疗法处方,作为证据,表明治疗的正当性(有时是暴露验证)已完成,因此所有放射疗法处方都应尽可能完整。这些应包括:独特的患者识别;诊断;解剖区域要处理,包括侧向;处方从业者的身份;治疗意图;日期处方已完成(书面);方式;卷的定义;计划目标量(PTV)的吸收剂量和/或剂量体积要求的规格;分级方案;正常组织约束;总体治疗时间;物理技术,能量和相关的情况下,计划的剂量分布以及任何其他相关治疗要求的细节,例如化学疗法,心脏植入电子设备(CIED),假肢。处方记录可以表示为单个文档,也可以在整个肿瘤管理系统和治疗计划系统中的数据项收集。
重新努力控制 mpox 疫情,重点是更全面、综合的方法:MPox 是 2024 年非洲报告的五大高负担卫生紧急情况之一,到年底有近 78,000 例疑似病例。向受影响国家提供的疫苗数量有限,以确保各国能够吸收剂量并减少浪费。2024 年底的报告强调刚果民主共和国的疫苗接种速度正在放缓,但该国实施了一项新的疫苗接种战略,以加速疫苗接种。新战略侧重于在疫情热点地区全面接种疫苗,截至 12 月底已接种约 175,000 剂疫苗。非洲疾控中心宣布了未来 3 个月的应对重点,包括加强热点地区的应对工作、全面综合病例管理(医疗、营养、心理社会护理)、分散检测以及支持加速疫苗接种,特别是针对 18 岁以下儿童。
我们开发了首创的达沙替尼衍生物显像剂 18 F-SKI-249380 ( 18 F-SKI),并在临床前模型中验证了其用于无创体内酪氨酸激酶靶向肿瘤检测的用途。在本研究中,我们评估了使用 18 F-SKI 对恶性肿瘤患者进行 PET 显像的可行性。方法:作为一项前瞻性研究的一部分,五名先前诊断为乳腺癌、肾细胞癌或白血病的患者在注射 18 F-SKI(平均 241.24 ± 116.36 MBq)90 分钟后接受全身 PET/CT 显像。此外,患者在注射后立即接受 30 分钟的上腹部动态扫描(至少部分包括心脏左心室、肝脏、脾脏和肾脏)(n = 2)或三次 10 分钟的全身 PET/CT 扫描(n = 3)以及基于血液的放射性测量,以确定示踪剂分布的时间过程并帮助估算辐射剂量。3 名患者中的一组在 180 分钟时接受了延迟的全身 PET/CT 扫描。对生物分布、剂量和肿瘤摄取进行了量化。使用 OLINDA/EXM 1.0 计算吸收剂量。结果:注射 18 F-SKI 后未发生不良事件。总共分析了 27 个肿瘤病灶,注射后 90 分钟的中位 SUV 峰值为 1.4(范围为 0.7 – 2.3),肿瘤与血液的比率为 1.6(范围为 0.8 – 2.5)。计算出的 4 个参考病灶的肿瘤内药物浓度范围为 0.03 至 0.07 nM。在所有参考病灶中,注射后 30 至 90 分钟内均观察到示踪剂的持续积累。血液放射性测定表明,放射性示踪剂从血液和血浆中的清除最初很快(血液半衰期,1.31±0.81分钟;血浆,1.07±0.66分钟;n=4),随后是不同程度的终末期延长(血液半衰期,285±148.49分钟;血浆,240±84.85分钟;n=2)或小幅上升至平台期(n=2)。与达沙替尼一样,18F-SKI在给药后经历了广泛代谢,代谢物分析证明这一点。放射性主要通过肝胆途径清除。正常组织中吸收剂量估计值(mGy/MBq)最高的是右结肠(0.167±0.04)和小肠(0.153±0.03)。有效剂量为 0.0258 mSv/MBq(SD,0.0034 mSv/MBq)。结论:18 F-SKI 表现出显著的肿瘤摄取,
卵巢癌(OC)是最致命的妇科恶性肿瘤(总生存率为5 Y,为46%)。OC。这项研究调查了使用[177 lu] lu-dota-trastuzumab(针对人类表皮生长因子受体2)的[177 lu] lu-dota-trastuzumab(一种抗体),基于gadolinium的纳米颗粒(GD-NP)是否会增加靶向放射性核素治疗的效率。GD-NP在常规外部光束放射疗法中具有放射敏作用,并已在临床II期试验中进行了测试。Methods: First, the optimal activity of [ 177 Lu]Lu-DOTA-trastuzumab (10, 5, or 2.5 MBq) combined or not with 10 mg of Gd-NPs (single injection) was investigated in athymic mice bearing intraperitoneal OC cell (human epidermal growth factor receptor 2 – positive) tumor xenografts.接下来,评估了[177 lu] lu-dota-trastuzumab具有GD-NP(3个给药方案)的5 MBQ的治疗效率和毒性。nacl,曲妥珠单抗加GD-NP和[177 lu] lu-dota-trastuzumab被用作控制。生物分布和剂量法,并对能量沉积进行蒙特卡洛模拟。最后,在3种癌细胞系中研究了GD-NPS的亚细胞定位和摄取以及组合的细胞毒性作用,以获取对所涉及机制的见解。结果:与GD-NP结合使用的最佳[177 lu] lu-dota-trastuzumab活性为5 MBQ。体外实验表明,与溶酶体共定位的GD-NP,其放射性敏感性是由氧化应激介导的,并被铁螯合剂脱脂型抑制。此外,与仅[177 lu] lu-dota-trastuzumab相比,获得最强的治疗性效率(肿瘤质量减少),在注射5 mg的GD-NPS/D(在24和72小时内24 h和72h)注射5 mg的GD-NPS/D(分隔6 h)[177 lu-lu-duudabab] lu-dababab abiabab。GD-NPS暴露于177 LU增加了螺旋钻的产量,但并不能增加吸收剂量。 结论:靶向放射性核素治疗可以与GD-NP结合使用,以增加治疗作用并减少注入活性。 作为GD-NP已在诊所中使用,这种组合可能是一种新的治疗方法,用于卵巢腹膜癌患者。GD-NPS暴露于177 LU增加了螺旋钻的产量,但并不能增加吸收剂量。结论:靶向放射性核素治疗可以与GD-NP结合使用,以增加治疗作用并减少注入活性。作为GD-NP已在诊所中使用,这种组合可能是一种新的治疗方法,用于卵巢腹膜癌患者。
辐射屏蔽的目的是将辐射治疗设备产生的有效辐射剂量降低到房间外的足够低水平。所需的有效剂量水平由地方或国家监管机构确定。所需的剂量水平通常在公共占用率(不受控制的访问)与职业占用(受控访问)方面有所不同。到达受保护位置的剂量率直接受到工作量(W)的影响,这是机器产生的辐射的度量。对于线性加速器,同中心的工作负载是在同中心处吸收的剂量率,在最大程度的吸收剂量的深度确定水中,每小时以灰色(例如,每小时,每周或一年或一年)为灰色(gy)(NCRP 2005b)。然后将同中心的工作负载归一化为距X射线目标1米(如果从X射线目标到同中心的距离不是1米),以产生屏蔽计算中使用的工作负载(W)。除了工作负载外,所需的屏蔽也是机器能量(MVS)的函数;从X射线目标(或同中心)到屏蔽点的距离;梁沿特定方向定向的时间的比例;以及所考虑的空间被认为是占用的时间的一部分。