摘要。寄生虫通常与热带和亚热带地区的低收入国家有关。仍然,它们在美国南部的低收入社区中也很普遍。表征美国寄生虫流行病学的研究有限,从而几乎没有全面了解该问题。本研究通过确定每个寄生虫的污染率和五个低收入社区的负担来调查美国南部寄生虫的环境污染。从阿拉巴马州,路易斯安那州,密西西比州,南卡罗来纳州和德克萨斯州的公共公园和私人住宅中收集了总共499个土壤样本。使用寄生虫锻炼,实现和珠饰的技术应用于污垢样品中,从样品中浓缩和提取寄生虫DNA,并通过多平行定量聚合酶链反应(QPCR)检测到。qPCR检测到胚泡属的总样品污染。(19.03%),Toxocara Cati(6.01%),Toxocara canis(3.61%),Strongylodoides stercoralis(2.00%),Trichuris Trichiura(1.80%)(1.80%),Ancylolostoma瘤duodecona(1.42%)(1.42%),吉亚迪亚氏菌(Giardiaia Intestinalis)(giardia intestalinalis(1.40%),ridsposposposposposspospospossposposspo。(1.01%),entamoeba Histolictica(0.20%)和固定物Americanus(0.20%)。其余样品没有寄生污染。整体寄生虫污染率在社区之间存在显着差异:西密西西比州西米(46.88%),阿拉巴马州西南部(39.62%),路易斯安那州东北部(27.93%)(27.93%),南卡罗来纳州西南部,南卡罗来纳州(27.93%)和南部(27.93%),以及南德克萨斯州(6.93%)(6.93%)(p,0.0001)。T. cati DNA负担在贫困率较高的社区中更为重要,其中包括路易斯安那州东北部(50.57%)和西密西西比州(49.60%)(49.60%),而阿拉巴马州西南部(30.05%)和南卡罗来纳州西南部(25.01%)(25.01%)(25.01%)(25.01%)(25.01%)(P 5 0.000011)。这项研究证明了寄生虫的环境污染及其与美国南部社区高贫困率的关系。
生产力(Abbass等,2022)。因此,它们对与食品相关的独特品质和地理指示构成了威胁。在过去的几十年中,气候变化已经开始影响茄科作物,极端的天气模式将显着影响番茄,胡椒和茄子的产量和质量(Lee等,2018; Bhandari et al。,2021; 2021; Suman,2022; 2022; 2022; 2022; Toppino等。,2022年)。尽管某些农业实践和耕种技术可能会提供临时应对机制,但需要实施长期策略来应对脆弱地区气候变化的挑战。繁殖策略在开发气候富裕品种以及常规育种技术(CBT)和新育种技术(NBT)方面起着至关重要的作用,为增强低输入生产系统中农作物弹性提供了强大的工具(Razzaq等人,2021年,2021年; Xiong等,20222)。从历史上看,育种计划一直集中在开发抗疾病的品种上以确保可持续生产(Poczai等,2022)。通过选择性地育种自然抗性或纳入野生亲戚的抗药性基因,育种者可以增强农作物对常见疾病的韧性,例如晚枯萎病,细菌枯萎病和病毒感染。繁殖工作还针对农艺性状,可以减轻气候变化对溶阿酸作物的影响,包括干旱耐受性,耐热性,耐水性(WUE)和营养吸收效率(NUE)。同时,增强水果质量的属性是番茄,胡椒和茄子的关键育种目标(Bebeli和Mazzucato,2009年)。因此,主要的育种重点是改善特征,例如avor,营养含量,质地和保质期,将它们纳入新品种,以确保这些农作物对消费者保持吸引力并适应不断变化的市场需求。在本文中,将审查有关下一代基因分型和 - 组技术的最新技术,用于审查茄科家族中多种弹性特征的分子预测,旨在为恢复和弹性设施(RRF)NextGeneration externeration Ensteration eutlanting Plans建立研究活动的起点。
有机太阳能电池(OSC)是一种可以将光能转化为电能的设备,它们具有轻巧,灵活,可加工的印刷和大面积的生产的优势,并且是减轻能量降低智能和环境污染的有效方法。由于供体和受体材料的快速发展,主动层形态的优化以及处理技术的成熟度,OSCS的功率转换效率(PCE)超过了19%。通常,OSC由阳极,阴极,电子,孔传输层和一个活动层组成,并且设备性能与活动层的形态密切相关。众所周知,OSC的光物理转换过程包括光子吸收,激子扩散,激子分离,电荷转运和收集。通常,活性层的厚度和成分对光子的吸收具有深远的影响。激子扩散的效率取决于活性层的域大小,crys-钙度和分子取向通常会影响激子分离的过程,并且互穿网络(双连续相分离)是电荷运输和收集的导电性。但是,由于结晶和相分离之间的竞争耦合关系,活动层的形态是无法控制的。因此,已经做出了强烈的努力来优化OSC的形态。简要摘要与本社论中的每本选定论文相关的内容如下:光子吸收对于激子的产生至关重要。在此标题为“有机太阳能电池中的形态控制”的社论中,我们将提供有关如何优化活性层形态的综合观点,以扩展对形态和设备性能之间关系的理解。这本标题为“有机太阳能电池中形态控制的形态控制”的社论呈现六篇论文,包括通过调节活性层的厚度[1]来提高光子的吸收效率[1],并添加第三个成分以制造三元太阳能电池[2],从而通过增强的近距离网络来改善Bilerec and septiser and septiser and septiser [3]结晶度[4],采用侧链工程来调节分子方向[5],最后是制造具有较高设备性能的大区块和灵活的OSC的建议[6]。活性膜的厚度在光子吸收的效率中起着重要作用。在穆罕默德·塔希尔(Muhammad Tahir)[1]中,作者研究了活性层的光学特性,形态和厚度之间的关系。根据UV-VIS吸收光谱和AFM图像,很明显,当纤维厚度在适当的范围内,即PFB 180 nm(即PCBM混合物)中时,某些粗糙度和不均匀的表面更适合于更好的光捕获,从而获得了高尺度的电流密度(因此获得了较高的速度速度电流密度(J SC)。这项工作表明,优化活性层的厚度对于设计具有较高光伏性能的设备是必需的。三元策略也通常被认为是改善光子吸收
Akshay Mehta,Alkesh Yadav,Aman Kumar,Kanika和Manish doi:https://doi.org/10.33545/26174693.2024.v8.i1i.i1i.481摘要纳米型,高级纳米型的造型,并具有较高的造型,并具有较高的构造。 管理。纳米颗粒由于其独特的特性,在作物改善和保护方面提供了创新的解决方案。纳米材料(例如纳米肥料)提高了养分的吸收效率,降低了环境影响并优化了资源利用。同样,纳米药物在害虫和疾病管理中表现出增加的功效,从而减少了对常规化学处理的需求。纳米技术在植物生长调节中也起着关键作用。纳米级输送系统可以控制生长调节器的控制释放,从而促进了植物发育和开花的精确调节。这种目标方法可以提高作物的产量和质量,同时最大程度地减少环境影响。此外,纳米传感器为对环境参数的实时监控做出了贡献,为精确农业提供了宝贵的见解。基于纳米材料的传感器检测土壤水分,养分水平和植物健康的变化,从而及时进行干预以进行最佳的作物管理。尽管有希望的应用,但纳米技术在园艺中的整合仍面临与环境影响,道德考虑和监管框架有关的挑战。解决这些问题对于确保农业中纳米技术的负责任和可持续部署至关重要。纳米技术在园艺中的作用是动态的和广泛的。从增强营养管理到革命性的害虫控制和生长调节,纳米技术具有巨大的潜力,可以推进园艺系统的可持续和有效实践。然而,考虑道德,环境和监管方面,平衡方法至关重要,以利用全部利益,同时减轻园艺中与纳米技术相关的潜在风险。本评论的重点是纳米技术在园艺中的作用。关键词:纳米技术,纳米颗粒,功效,纳米传感器引言全球人口正在稳步增加,在满足全球对当前和未来对食品的需求方面构成了重大挑战。为了应对这一挑战,迫切需要增加农作物的产量,估计表明增加了70%。虽然传统的肥料在支持农民方面发挥了作用,但发现其密集使用会对土壤质量产生不利影响,并对人类健康和环境构成风险。农业部门的发展取决于提高资源效率并明智地采用现代技术。纳米技术是增强农业可持续性,尤其是发展中国家的有前途的途径。纳米结构配方采用有针对性的递送,缓慢/受控的释放和有条件的释放机制,响应生物学需求并可能改变农业系统。nanoferizers,例如Zn,Cu和Fe,解决土壤固定的挑战并优化光合效率。肥料的纳米大小可增强纳米级植物毛孔的养分利用率,从而提高了营养利用效率。纳米颗粒有助于更快的种子发芽,农业产量升高和叶绿素含量改善,从而通过有效吸收来促进植物的生长(Hayat等,2023)[14]。在纳米肥料中发现了纳米技术的显着应用,从而增强了植物的营养吸收能力。研究表明,纳米肥料的使用可提高养分利用效率,减轻土壤毒性,减少过量药物的不良反应,并降低所需治疗的频率(Ditta,2012)[9]。在追求可持续农业时,纳米技术具有巨大的潜力,提供了创新的解决方案来解决粮食生产和环境影响的复杂性(Shilpa等,2022)[34]。