使用光吸收纳米颗粒将光能转化为热量是生物医学光热治疗的基本基础。除了生物相容性和靶向感兴趣的组织的能力外,作为光热剂的纳米颗粒的规格还包括在近红外范围内具有强的摩尔吸收系数(生物组织的第一个光学窗口),对吸收能量的热转化为热量,并有效地转移到环境环境中。最后两个规格合并为名为“光到热转化效率”(LHCE)的度量,这是专用于光热治疗1,2的药物的主要定量 - 标准之一。因此,一种可靠的方法来确定光热纳米剂的LHCE是有意义地比较定量不同类型的纳米颗粒的方法。值得注意的是,LHCE可能会随光激发的波长和LHCE的多波长测定而变化,可以指导用于治疗应用的激光的选择。
摘要:本文报告了通过无催化剂化学气相沉积 (CVD) 生长法合成 InSe 纳米带。当 InSe 纳米带的厚度从 562 nm 减小到 165 nm 时,峰值光响应发生了显著的蓝移。Silvaco Technology 计算机辅助设计 (TCAD) 模拟表明,这种光谱响应的变化应归因于 InSe 的波长相关吸收系数,其中较短波长的入射光将在表面附近被吸收,而较长波长的光将具有更大的穿透深度,导致较厚的纳米带器件的吸收边缘发生红移。基于上述理论,通过调控纳米带的厚度,实现了对蓝光(450 nm)、绿光(530 nm)、红光(660 nm)入射光敏感的三种光电探测器,可以实现紫色“H”图案的光谱重建,表明二维层状半导体在全色成像中的潜在应用。
金属卤化物钙钛矿 (MHP) 是一种具有优异性能的半导体材料,广泛应用于各个行业。这些材料通常表现出直接跃迁半导体行为,其特点是吸收系数高、激子结合能低,从而具有出色的 PV 性能。此外,MHP 显示出高效的载流子传输速率、较长的载流子寿命和显著的扩散长度,从而能够以最少的复合实现电子和空穴的有效传输。1 利用 MHP 作为吸收层的钙钛矿太阳能电池 (PSC) 已成为第三代太阳能电池的典范。2009 年,Miyasaka 等人实现了 PSC 开发的一个重要里程碑。用钙钛矿取代染料敏化太阳能电池中的吸收材料,使光伏转换效率 (PCE) 达到 3.8%。2 从那时起,PSC 引起了广泛关注,其 PCE 经历了快速增长,如图所示。1(A)。3 – 9 目前,单结 PSC 已实现认证 PCE 26.14%,10 稳步接近 Shockley – Queisser 效率极限 33.7%。11
摘要。在本研究中,实现了超高分子量聚乙烯 (UHMWPE) 片材的聚合物接头,并通过在 970 nm 波长下工作的二极管激光器进行焊接。其中一张聚合物片材以不同的浓度掺杂了纳米填料(碳、钛和银纳米颗粒),以提高在激光波长下的吸收系数。激光器以重复率工作,最大脉冲能量为 100 mJ,时间为 1-60 秒,将光传输通过直径为 300 µm 的光纤。激光已通过透明的第一种聚合物传输,并被第二种掺杂聚合物的表面吸收。在两种聚合物箔(每种厚度为 0.5 mm)的界面处,释放的能量在压力的帮助下引起熔化,从而产生快速而耐用的焊接。已经通过机械静态(剪切应力)和动态分析执行并研究了单搭接和双搭接几何形状。评估了不同粒子性质对关节机械特性的影响。介绍并讨论了关节区域的形态学观察。关节因其特殊特性可用于生物医学领域。
通过材料厚度非线性传输和 Z 扫描技术,研究了用 775 nm、1 kHz 飞秒激光脉冲激发的多晶硒化锌 (ZnSe) 的光学非线性。测得的双光子吸收系数 β 与强度有关,推断 ZnSe 在高强度激发下也与反向饱和吸收 (RSA) 有关。在低峰值强度 I < 5 GW cm –2 时,我们发现 775 nm 处的 β = 3.5 cm GW –1。研究了宽蓝色双光子诱导荧光 (460 nm-500 nm) 的光谱特性,在带边附近表现出自吸收,而上能级寿命测得为 τ e ~ 3.3 ns。在光学腔内泵浦 0.5 毫米厚的多晶 ZnSe 样品时观察到受激辐射,峰值波长 λ p = 475 nm 时,谱线明显变窄,从 Δ λ = 11 nm(腔阻塞)到 Δ λ = 2.8 nm,同时上能级寿命也缩短。这些结果表明,在更优化的泵浦条件和晶体冷却下,多晶 ZnSe 可能通过 λ = 775 nm 的双光子泵浦达到激光阈值。
摘要 自 19 世纪末 X 射线成像的发展以来,医学成像领域发展出了一系列令人印象深刻的模式。这些模式可以测量和成像各种物理参数,从吸收系数到自旋-自旋弛豫。然而,在整个 20 世纪的大部分时间里,组织的固有生物力学特性仍然隐藏在传统放射学之外。这种情况在 1990 年左右发生了变化,当时人们证明,具有快速脉冲重复率和高运动灵敏度的医学超声系统可以创建与组织硬度及其剪切波特性相关的图像。从那时起,人们开始在不同模式下大力开发组织弹性特性成像。这些从研究阶段开始,经过临床扫描仪的实施,经过选定诊断任务的广泛临床试验,到政府批准、付款人批准、国际标准声明,再到全球的常规临床实践。本综述涵盖了过去 30 年技术和临床发展的一些主要主题的亮点,并简要指出了未来十年发展中剩下的一些问题。
摘要。碳基材料,例如石墨烯和碳纳米管,由于其出色的柔韧性,轻巧的重量和可调性,因此已成为最先进的超材料设备的变革性构件。在这项工作中,提出了一个具有超人带吸收的可调的无碳金属Terahertz(THz)跨表面,由交替的石墨和石墨烯图案组成,其中Fermi石墨烯的Fermi水平通过改变施加的电压偏置来调节,以实现可调节的Ultrabroad Bavel吸收吸收特征。特别是,当石墨烯的费米水平为1 eV时,吸收系数从7.24到16.23 THz超过90%,重要的是,吸收带宽达到8.99 THz。此外,它对入射波不敏感,并以高达50度的入射角度保持高吸收率。与THZ制度中的常规吸收器相比,这种基于碳的设备具有更高的吸收带宽,速率和性能,并且可以在各个领域中使用,包括THZ波传感,调制,可穿戴医疗保健设备和生物医学检测。
其高吸收系数使其在半透明太阳能电池应用方面具有吸引力。 [6] 然而,这些材料的高吸收系数使其难以在低带隙钙钛矿(≈带隙<1.7 eV)PSC 中获得高平均可见光透射率 (AVT) 值。虽然降低钙钛矿层厚度是增强任何半透明 PSC (ST-PSC) 中 AVT 的明显解决方案,但是,由于与使用溶液工艺制造亚 100 纳米、均匀、无针孔的钙钛矿薄膜相关的限制,该解决方案尚未可靠地实施。 [7] 因此,限制了 ST-PSC 可实现的最大 AVT。为了解决这个问题,据报道,替代性的钙钛矿层沉积和生长策略可以在不需要显著减少膜厚度的情况下提高钙钛矿层的透射率。[7] 例如,最初引入了脱湿和网格辅助沉积技术,使钙钛矿薄膜部分覆盖在基底上。脱湿技术导致随机生长的钙钛矿岛的形成,[8,9] 而网格辅助沉积导致钙钛矿在受控的网格结构中生长。[10,11] 虽然这两种方法显著提高了钙钛矿层的透射率,但由于在无钙钛矿区域空穴传输层和电子传输层直接接触导致分流通路的存在,相应的器件表现出有限的 PCE。[12] 需要在没有钙钛矿的区域额外选择性沉积绝缘分子,以减少上述泄漏损失。 [12,13] 随后,引入支架层和材料以生长有序的大孔 [14] 微结构 [15,16] 和纳米结构 [17] 钙钛矿层。虽然这些钙钛矿结构表现出增强的透射率和减少的分流通路,从而提高了 ST-PSC 的 AVT 和 PCE,但它们的制造相对复杂和繁琐得多,即与厚的不透明钙钛矿薄膜的溶液处理相比,它们需要额外的材料和合成工艺。此外,在大多数情况下,上述 ST-PSC 的开路电压 (V oc) 和填充因子 (FF) 分别低于 ≈ 1000 mV 和 ≈ 70%,这表明与不透明的对应物相比,这些器件中存在残余复合损失。因此,需要一种简单的替代方法来生长足够透明和致密的钙钛矿层
太阳能电池是一种光伏装置,它通过吸收半导体中的光生载流子,将太阳能直接转化为电流。太阳能电池主要涉及三个过程:吸收光子产生电荷载流子、分离载流子和收集载流子。半导体材料通常吸收能量大于其带隙的光子。被吸收的光子激发电子从吸收材料中的价带移动到导带,从而产生电子-空穴对。产生的电荷载流子对要么重新组合,要么分离然后收集。吸收的光子取决于吸收材料的厚度和吸收系数。太阳能电池的关键部分是pn结的形成,pn结由两种连接在一起的半导体材料组成,其中一种是n型掺杂的,另一种是p型掺杂的。在CIGS太阳能电池中,各种不同的半导体材料用于形成pn结,因此这种结构称为异质结。使用异质结可以为电池提供宽带隙窗口层,从而减少表面复合。价带和导带
诊断癌症的程序需要严格的足够的医疗资源和基础。及时访问临床医生和实验室资源对于居住在贫困线以下的人通常是不可行的。1,2因此,有必要开发一种在护理点上有效检测癌症的手段,从而特别考虑了低资源临床环境中的后勤挑战。为实现这一目标,许多小组都将可见的弥漫性反射光谱(DRS)视为捕获可疑病变的“光学活检”的一种手段。这种“光学活检”方法有许多优势。例如,可以在门诊点的设置中进行此成像,并获得这些活检的设备,例如可见的光谱仪,相对便宜。例如,用于收集此处显示的数据的DRS系统的费用<$ 2500 USD 5,并且对发生恶性肿瘤发生的组织微环境的许多变化很敏感。这些变化的一个例子包括增加的血管生成,其表现为异常高吸收系数μa。另一个例子是肿瘤微环境内细胞外基质的崩溃,这会导致异常低降低的灭绝系数,μ0s。6