4.2 posission posission Posology儿童和青少年的儿童和青少年(每鼻孔为0.1 ml)。对于以前尚未接种季节性流感的儿童,应在至少4周的时间间隔内给予第二剂。fluenz不应在24个月以下的婴儿和幼儿中使用,因为对该人群的住院和喘息率提高而存在安全性(请参阅第4.8节)。必须由鼻腔给药进行给药方法。请勿注入Fluenz。fluenz均作为分裂剂量给药。在一个鼻孔中施用一半剂量后,立即或之后不久或之后立即在另一个鼻孔中给予另一半剂量。在接受疫苗时,患者可以正常呼吸 - 无需积极吸气或嗅探。有关管理说明,请参见第6.6节。4.3禁忌症•对活动物质的过敏性,第6.1节中列出的任何赋形剂(例如明胶),或庆大霉素(可能的痕量残留物)。•严重的过敏反应(例如过敏)至鸡蛋或卵子蛋白(例如卵形蛋白)。•由于疾病或免疫抑制疗法而具有临床免疫缺陷的儿童和青少年,例如急性和慢性白血病,淋巴瘤,症状HIV感染,细胞免疫缺陷和高剂量皮质类固醇。肾上腺功能不全。Fluenz并非禁忌用于无症状HIV感染的个体;或接受局部/吸入皮质类固醇或低剂量全身性皮质类固醇或接受皮质类固醇作为替代疗法的人,例如•18岁以下的儿童和青少年因雷耶综合症与水杨酸酯和野生型流感感染而接受水杨酸酯治疗。4.4使用可追溯性的特殊警告和预防措施,以提高生物药物产品的可追溯性,应清楚记录管理产品的名称和批次数。与大多数疫苗一样,应始终容易获得适当的医疗治疗和监督,以管理弗洛伦茨(Fluenz)后的过敏反应或严重的超敏反应。fluenz不应给患有严重哮喘或主动喘息的儿童和青少年,因为在临床研究中尚未对这些人进行充分的研究。
背景:ICU 中所有使用机械通气的患者都必须对吸气气体进行加湿,可以使用加热加湿器 (HH) 或热湿交换器 (HME)。最近的研究表明,对于 COVID-19 患者,加湿设备的选择可能会对患者的管理产生相关影响。我们报告了 2 个使用 HME 或 HH 的 ICU 的数据。方法:审查了魁北克市 2 个 ICU 中第一波疫情期间需要有创机械通气的 COVID-19 患者的数据。其中一个 ICU 使用了 HME,而另一个 ICU 使用了加热丝 HH。我们比较了呼吸机设置和调整呼吸机设置后第一天的动脉血气。报告了气管插管阻塞 (ETO) 或亚阻塞事件以及限制加湿不足风险的策略。在台架试验中,我们用湿度计测量了不同环境温度下 HH 的湿度,并评估了其与加热板温度的关系。结果:我们报告了 20 名 SARS-Cov-2 阳性受试者的数据,其中 6 名在使用 HME 的 ICU 中,14 名在使用 HH 的 ICU 中。在 HME 组中,尽管每分钟通气量较高(171 vs 145 mL/kg/min 预测体重 [PBW]),但 P aCO 2 较高(48 vs 42 mm Hg)。我们还报告了在使用 HH 的 ICU 中发生了 3 次 ETO。湿度台架研究报告了 HH 的加热板温度与输送湿度之间存在很强的相关性。在采取措施避免湿度不足后,包括监测加热板温度,不再发生 ETO。结论:COVID-19 患者使用的加湿装置的选择对通气效率(增加 CO 2 去除率,减少死腔)和与低湿度相关的并发症(包括在高环境温度下使用加热丝 HH 时可能出现的 ETO)有相关影响。关键词:加热加湿;热湿交换器;死腔;CO 2;COVID-19;气管插管阻塞。[Respir Care 2022;67(2):157–166。© 2022 Daedalus Enterprises]
背景:手术后细菌脑脓肿的建议标准治疗是静脉内(IV)抗生素治疗的6至8周,但已提出早期改用口服抗生素治疗的治疗是同样有效的。方法:该研究者引发的,国际,多中心,平行组,开放标签,随机(1:1分配)对照试验将检查iV抗生素治疗2周后是否对口服治疗是不及标准的6 - 8周的iV抗生素iv抗生素的iv抗生素,用于成人(年龄18岁)。该研究将在丹麦,荷兰,法国,澳大利亚和瑞典的医院进行。排除标准是严重的免疫功能低下或受损的胃肠道吸收,妊娠,与装置相关的脑脓肿以及由诺卡心脏,结核病或假单胞菌属引起的脑脓肿。主要目的是在随机死亡率,脑脓肿的室内破裂,外旋转的重新吸气或切除脑脓肿,复发或复发的脑室室内破裂,脑后破裂,脑后破裂,复发或复发。主要终点将由一个独立的盲目端点委员会裁定。次要结局包括延长的格拉斯哥成果量表评分和治疗结束时的全因死亡率以及自随机分组以来的3、6和12个月,分配的治疗,IV导管相关并发症,入院率和抗生素治疗持续时间,严重的不良事件,生命质量,生活质量评分以及认知评估。第一研究中心的启动日期是2020年11月3日,主动招募3年,并在所有患者中进行了随访。计划的样本量为450名患者,单侧α为0.025,功率为90%,排除了差异,以支持超过10%的标准治疗。讨论:这项研究的结果可能指导未来治疗细菌脑脓肿的建议。如果早期过渡到口服抗生素是不属于标准IV治疗的,这将提供相当大的健康和成本益处。试验注册:ClinicalTrials.gov NCT04140903,首次注册28.10.2019。Eudract编号:2019-002845-39,首次注册03.07.2019
Ayse Koyun是环境科学与工程系的博士后科学家以及哈佛大学的工程与应用科学学院。她拥有维也纳技术大学技术化学(材料科学)的医生学位。在她的博士学位期间,AYSE专注于使用原子力显微镜进行材料表征,并研究了建筑材料的老化。作为哈佛大学的博士后科学家,她的研究现在以了解气候和人类健康的气溶胶的影响(悬挂在空中的微小颗粒)的影响。她探讨了诸如构造之类的活动如何产生这些粒子以及它们如何影响吸气者的福祉。在哈佛大学,Ayse采用了一种称为电动力悬浮的尖端技术,以悬浮在空中中的气溶胶颗粒,从而使她能够研究它们在经历各种条件时如何发展,例如光暴露和湿度变化。她检查了来自不同来源的颗粒,从燃烧植物产生的烟雾到特定的化合物。通过阐明这些悬浮的颗粒,她观察到它们的反应和转化,阐明了气溶胶在环境中的行为及其对气候的潜在影响。除了在哈佛大学的工作外,AYSE还为SABER(平流层气溶胶过程,预算和辐射效应)任务做出了贡献,这是一项扩展的空中科学测量计划,研究了上层对流层和下层平流层(UTLS)的运输,化学,微物理和辐射特性。利用NASA WB-57高海拔研究飞机,Ayse有助于表征任务期间收集的微型气溶胶。SABER部署提供了对气溶胶尺寸分布,成分和辐射特性的广泛详细测量,以及不同区域和季节中相关的微量气体。这些观察结果对于提高全球模型准确模拟平流层气溶胶加载变化的辐射,动力学和化学影响的能力至关重要。ayse的总体目标是提供有关气溶胶颗粒对我们世界的起源,转化和影响的关键见解。通过为气候模型的发展做出贡献,并制定了减轻气溶胶的不利影响的战略,她的目标是对气候研究和公共卫生产生有意义的影响。最终,她在实验室和Saber任务中收集的实验数据有助于完善全球化学气候模型,从而弥合了科学发现和大规模模拟之间的差距。
图1:从6月1日至7月31日在加州大学戴维斯分校校园的每日8小时平均浓度。图2:从6月1日至7月31日在加州大学戴维斯分校校园的每日24小时平均浓度为PM-2.5。图3:研究成年雌性猴子和后代的暴露和评估时间表的示意图。图4:PM 2.5的量化成年雌性猴子暴露于野生生命的早期烟雾PM 2.5。图5:对早期生活烟雾烟PM 2.5暴露于成年雌猴的臭氧暴露的定量。图6:不受早期生命烟雾烟PM 2.5暴露的全身细胞因子。图7:受早生野火烟雾PM 2.5暴露的全身细胞因子。图8:在6小时LPS治疗后,成年雌猴的早期野火烟雾与早期野火烟雾PM 2.5暴露于早期生命的烟雾PM 2.5。图9:24小时LPS治疗后,成年雌性猴子的早期野火烟雾与早期野火烟雾PM 2.5暴露于早期生命的烟雾PM 2.5。图10:早期野火烟雾PM 2.5暴露后血浆CRP和IL-8蛋白浓度。图11:成年雌性猴子的高分辨率计算机断层扫描术的胸壁成像:肺体积。图12:成年雌性猴子的高分辨率计算机断层扫描术的胸壁成像:吸气能力。图13:成年雌性猴子的高分辨率计算机断层扫描术的胸壁成像:气道半径。图14:成年雌性猴子的高分辨率计算机断层扫描术的胸壁成像:血管密度。图15:带有Actiwatch Mini的3D打印尼龙项圈。图16:归一化为日出的动物队列的五天平均活动水平。图17:暴露对活动和室外畜栏中的睡眠的影响。图18:加利福尼亚国家灵长类动物研究中心的2008年和2009年同伙的地塞米松测试Z得分。
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用
A 安培、面积、高度、埃 (Å)、处理系统天线孔径或空中 (英国) AFOTEC 空军作战 T&E 中心 A-799 无故障证据报告 A/G 空对地 A/A、A-A、AA 空对空或防空 AGB 自主制导炸弹 AA-() 空对空导弹编号 () AGC 自动增益控制 AAA 防空炮兵 AGI 辅助通用情报 AAAA 美国陆军航空协会 (情报收集船) AAED 先进机载消耗性诱饵 AGL 高于地面 AAM 空对空导弹 AGM 空对地导弹 AARGM 先进反辐射制导 AGS 角门窃取导弹 (概念) AHWS 先进直升机武器系统 AAW 防空战 AI 人工智能、空中拦截或 A-BIT 自动内置测试机载拦截器 ABM 吸气式导弹或 AIAA 美国航空和反弹道导弹航天学会 A/C 飞机(也称 acft.)AIC 空中拦截控制 AC 交流电 AIM 空中拦截导弹 ACA 联合承包商协议或 AIRLANT 美国指挥官海军航空兵,空域协调区 大西洋舰队 ACAT 采购类别 AIRPAC 美国指挥官海军航空兵,ACCB 飞机配置控制委员会 太平洋舰队 Acft 飞机(也称 A/C) AJ 抗干扰或抗干扰 ACLS 航空母舰着陆系统 A-Kit 系统飞机接线套件 ACM 先进巡航导弹或空中(包括电缆、机架等。不包括战斗机动 WRA) ACQ 采购AM 幅度调制 ACS 天线耦合器组 AMD 飞机维修部 ACTD 先进概念技术 AMES 先进多环境演示模拟器 A/D 模拟到数字 AMLV 先进内存加载器/验证器 Ada 不是首字母缩略词。Ada 是 DoD Amp Amplifier 标准编程语言。AMRAAM 先进中程空对空 ADM 先进发展模型导弹 ADP 自动数据处理或 ANSI 美国国家标准协会先进发展计划 ANT 天线 ADVCAP 先进能力 A 作战可用性 AEC 航空电子战(陆军) AO 声光 AEGIS 自动电子制导拦截 AOA 到达角、攻角或替代方案系统分析(类似于 AEL 可访问发射限值 COEA) AEW 机载预警 AOC 老乌鸦协会(专业 AF 天线因子、空军或音频 EW 协会)或合同授予 频率 AOT 仅角度跟踪、尾部角度或 AFB 空军基地或机身公告 目标捕获 AFC 自动频率控制或 APC 安费诺精密连接器或机身更换 装甲运兵车
A 安培、面积、高度、埃 (Å)、处理系统天线孔径或空中 (英国) AFOTEC 空军作战 T&E 中心 A-799 无故障证据报告 A/G 空对地 A/A、A-A、AA 空对空或防空 AGB 自主制导炸弹 AA-() 空对空导弹编号 () AGC 自动增益控制 AAA 防空炮兵 AGI 辅助通用情报 AAAA 美国陆军航空协会 (情报收集船) AAED 先进机载消耗性诱饵 AGL 高于地面 AAM 空对空导弹 AGM 空对地导弹 AARGM 先进反辐射制导 AGS 角门窃取导弹 (概念) AHWS 先进直升机武器系统 AAW 防空战 AI 人工智能、空中拦截或 A-BIT 自动内置测试机载拦截器 ABM 吸气式导弹或 AIAA 美国航空和反弹道导弹航天研究所 A/C 飞机(也称为 acft.)AIC 空中拦截控制 AC 交流电 AIM 空中拦截导弹 ACA 联合承包商协议或 AIRLANT 美国指挥官海军航空兵,空域协调区 大西洋舰队 ACAT 采购类别 AIRPAC 美国指挥官海军航空兵,ACCB 飞机配置控制委员会 太平洋舰队 Acft 飞机(也称为 A/C) AJ 抗干扰或抗干扰 ACLS 航空母舰着陆系统 A-Kit 系统飞机接线套件 ACM 先进巡航导弹或空中(包括电缆、机架等。Ada 是 DoD Amp Amplifier 标准编程语言。(不包括战斗机动 WRA) ACQ 获取 AM 幅度调制 ACS 天线耦合器组 AMD 飞机维修部 ACTD 先进概念技术 AMES 先进多环境演示模拟器 A/D 模拟到数字 AMLV 高级内存加载器/验证器 Ada 不是首字母缩略词。AMRAAM 先进中程空对空 ADM 先进发展模型导弹 ADP 自动数据处理或 ANSI 美国国家标准协会先进发展计划 ANT 天线 ADVCAP 先进能力 A 作战可用性 AEC 航空电子战(陆军) AO 声光 AEGIS 自动电子制导拦截 AOA 到达角、攻角或替代方案系统分析(类似于 AEL 可访问发射限值 COEA) AEW 机载预警 AOC 老乌鸦协会(专业 AF 天线因子、空军或音频 EW 协会)或合同授予 频率 AOT 仅角度跟踪、尾部角度或 AFB 空军基地或机身公告 目标捕获 AFC 自动频率控制或 APC 安费诺精密连接器或机身更换 装甲运兵车
A 安培、面积、高度、埃 (Å)、处理系统天线孔径或天线 (英国) AFOTEC 空军作战 T&E 中心 A-799 无故障证据报告 A/G 空对地 A/A、AA、AA 空对空或防空 AGB 自主制导炸弹 AA-() 空对空导弹编号 () AGC 自动增益控制 AAA 防空炮兵 AGI 辅助通用情报 AAAA 美国陆军航空协会 (情报收集船) AAED 先进机载消耗性诱饵 AGL 高于地面 AAM 空对空导弹 AGM 空对地导弹 AARGM 先进反辐射制导 AGS 角门窃取导弹 (概念) AHWS 先进直升机武器系统 AAW 防空战 AI 人工智能、空中拦截或 A-BIT 自动内置测试机载拦截器ABM 吸气式导弹或 AIAA 美国航空与反弹道导弹协会 宇航 A/C 飞机(也称为 acft.) AIC 空中拦截控制 AC 交流电 AIM 空中拦截导弹 ACA 联合承包商协议或 AIRLANT 美国海军航空兵司令,空域协调区 大西洋舰队 ACAT 采购类别 AIRPAC 美国海军航空兵司令,ACCB 飞机配置控制委员会 太平洋舰队 Acft 飞机(也称为 A/C) AJ 抗干扰或抗干扰 ACLS 航空母舰着陆系统 A-Kit 系统的飞机接线套件 ACM 先进巡航导弹或空中(包括电缆、机架等,但不包括作战机动 WRA) ACQ 采购 AM 幅度调制 ACS 天线耦合器组 AMD 飞机维修部 ACTD 先进概念技术 AMES 先进多环境演示模拟器 A/D 模拟到数字 AMLV 先进存储器加载器/验证器 Ada 不是首字母缩略词。Ada 是 DoD Amp 放大器标准编程语言。 AMRAAM 先进、中程、空对空 ADM 先进开发模型导弹 ADP 自动数据处理或 ANSI 美国国家标准协会先进开发计划 ANT 天线 ADVCAP 先进能力 A 作战可用性 AEC 航空电子战(陆军) AO 声光 AEGIS 自动电子制导拦截 AOA 到达角、攻角或替代方案系统分析(类似于 AEL 可访问发射限值 COEA) AEW 机载预警 AOC 老乌鸦协会(专业 AF 天线因子、空军或音频 EW 协会)或合同授予 频率 AOT 仅角度跟踪、尾部角度或 AFB 空军基地或机身公告 目标捕获 AFC 自动频率控制或 APC 安费诺精密连接器或机身更换 装甲运兵车
物种。随着DNA测序信息的可用性来指导系统发育分析,从2000年代中期开始重新检查主要定义在形态特征的属中的物种,从而进行了修订,包括将某些物种分配到两个新属中(Hoffmann 2010; Hoffmann 2010; Hoffmann 2010; Hoffmann等; Hoffmann等;2007)。 虽然目前DNA测序是推断该属中新物种的主要方法,而粘膜属中的许多物种对于支持物种划界仍然有用,例如在吸毒物种中,菌落色素化和无性孢子孢子学(Urquhart&Idnurm 20211)。 有50多种吸毒物,其中一半在过去五年中被发现,尤其是来自亚洲国家(HTET等人 2024; Hurdeal等。 2023; Lim等。 2024; Zhao等。 2022a; Zhao等。 2023; Zhao等。 2022b; Zong等。 2021)和巴西(Cordeiro等人 2020; De Freitas等。 2022; Leitão等。 2021)。 这还包括来自澳大利亚的调查,探索了从维多利亚州分离出的吸收菌株的多样性,从而发现了新物种sprapidia healeyae(urquhart&idnurm 2021)。 在这里,作为2023年新型粘膜瘤物种的筛查的一部分,发现了新的抽吸。2007)。虽然目前DNA测序是推断该属中新物种的主要方法,而粘膜属中的许多物种对于支持物种划界仍然有用,例如在吸毒物种中,菌落色素化和无性孢子孢子学(Urquhart&Idnurm 20211)。有50多种吸毒物,其中一半在过去五年中被发现,尤其是来自亚洲国家(HTET等人2024; Hurdeal等。2023; Lim等。2024; Zhao等。2022a; Zhao等。2023; Zhao等。2022b; Zong等。2021)和巴西(Cordeiro等人2020; De Freitas等。2022; Leitão等。2021)。这还包括来自澳大利亚的调查,探索了从维多利亚州分离出的吸收菌株的多样性,从而发现了新物种sprapidia healeyae(urquhart&idnurm 2021)。在这里,作为2023年新型粘膜瘤物种的筛查的一部分,发现了新的抽吸。最近发现更多的吸毒物种表明,在意识到该属内的全部多样性之前,还有一定的距离,更不用说开始了解他们的生态偏好和分布了。奇怪的是,该物种的另外三种菌株(或近亲)先前在2018年被隔离,但当时分配给了不同的吸气物种,因此新物种被隐藏在明显的视线中。