通过增强学习(RL)进行拖曳减少的主动流控制(RL)是在带有涡旋脱落的层流方向的二维方形悬崖体后进行的。由神经网络参数参数的控制器经过训练,以驱动操纵不稳定流量的两次吹和吸气喷气机。具有完全可观察性的RL(传感器在尾流中)成功地发现了一种控制策略,该策略通过抑制涡流脱落而降低阻力。但是,当控制器接受部分测量(体内传感器)训练时,观察到不可忽略的性能降解(减少50%)。为了减轻这种效果,我们提出了一种能量,动态的,最大的熵RL控制方案。首先,提出了基于能量的奖励功能,以优化控制器的能量消耗,同时最大程度地减少阻力。第二,控制器的培训是通过由当前和过去的测量和动作组成的增强状态训练的,可以将其作为非线性自回归外源模型进行配制,以减轻部分可观察性问题。使用第三,最大熵RL算法(软演员评论家和截短的分位数评论家),以样本效果的方式促进探索和剥削,并在挑战性的部分测量案例中发现近乎最佳的策略。稳定涡流脱落是在人体后部仅使用表面压力测量的近唤醒中实现的,从而导致与唤醒传感器相似的阻力减小。提出的方法使用部分测量对现实配置开辟了新的动态流量控制途径。
图1:海洋雾过程 - 前流大陆或海洋吸气气溶胶作为FCN。通过蒸气的扩散沉积(插图)在FCN周围生长。Kohler(1936)认为,液滴生长需要超过由表面张力和溶质浓度的相对影响确定的临界半径(分别分别增加/降低了液滴蒸气,分别增加/降低)。最小的湍流(Kolmogorov或K)涡流在ABL中的作用,在该ABL中,FCN被嵌入其中,但尚未了解(插图)。请注意,对于空气,K量表和(Obukhov-Corrsin O-C)温度耗散量表的顺序相同,因此在k涡流或立即周围FCN的温度是同质的。产卵液滴会结合和沉降(插图)。贡献上海的过程/现象包括波浪和破裂,夜间对流,湍流和混合,潮汐和电流。相应的低大气现象包括波边界层以及剪切和对流湍流。在空气界面,湍流,质量,动量和气溶胶交换通过波浪破裂和通过[Molecular]皮肤层的恢复而发生,这会燃烧空气 - 海洋相互作用。短/长波辐射(SWR/LWR)和对流过程也影响海面温度(SST)。MABL的重要贡献来自概要和中尺度[对流]系统,包括前部,高和低点,反转,海面和雾顶的加热/冷却,DIEL循环,云,云,湍流和气溶胶。如果存在,则来自边界混合,上升流,升级的波浪破裂,海洋/海洋[差分]加热和内部边界层(IBL)的沿海贡献对雾生命周期有重大影响。
吸入:如果被吸入打开的电池的内容物,请清除污染源或将受害者移至新鲜空气。获得医疗建议。眼神接触:与打开的单元的内容接触可能会引起燃烧。如果与开放式电池的内容物发生眼神接触,请立即用不温暖的眼睛冲洗受污染的眼睛,在保持眼睑张开时轻轻流动至少15分钟。中性盐溶液可在可用后立即使用。如有必要,在运输到急诊机构期间继续冲洗。注意不要将污染的水冲入未受影响的眼睛或脸上。迅速将受害者运送到紧急护理机构。皮肤接触:与打开的单元的内容接触可能会引起燃烧。如果皮肤接触与开放式牢房的内容发生,请尽快去除受污染的衣服,鞋子和皮革制品。立即用温水冲洗,轻轻流动水至少15分钟。如果刺激或疼痛持续存在,请寻求医疗护理。在重复使用或丢弃之前,完全净化衣服,鞋子和皮革制品。摄入:与打开的单元的内容接触可能会引起燃烧。如果摄入开放式细胞的内容发生,如果受害者迅速失去意识,或者是无意识或抽搐的话,切勿嘴巴任何东西。让受害者用水彻底冲洗嘴。不要引起呕吐。如果呕吐自然发生,请让受害者向前倾斜以降低吸气风险。让受害者再次用水冲洗嘴。迅速将受害者运送到紧急护理机构。
5 传统(不可寻址)火灾指示器面板 7 传统探测器 - VIGILANT 614 系列 9 传统探测器底座 10 传统手动报警点 14 可寻址火灾指示器面板 16 MX TECHNOLOGY 模拟可寻址探测器 21 功能探测器底座 25 MX TECHNOLOGY 模拟可寻址模块 30 MX4428 响应器 41 模拟可寻址 130 系列探测器 43 模拟可寻址 130 系列模块 45 SIMPLEX 4100ESi 系统概览 48 可寻址环路卡 - MX 和 IDNet 51 SIMPLEX 高级接口 52 SIMPLEX 4100 网络系统 54 TrueAlarm 可寻址探测器 56 SIMPLEX 可寻址 MAPNET II 模块 57 SIMPLEX 可寻址 MAPNET II/IDNet 模块 58 SIMPLEX 可寻址IDNet 模块 61 探测器附件和远程指示器 63 火灾面板辅助设备 65 VIGILANT 19 英寸机架柜系列 69 线束和电缆 72 AS1668 控制器和气体控制器 74 VIGILANT 远程报警器 75 CCU 网络 77 警告系统 78 QE90 辅助设备及备件 83 警告系统发电机 87 警告系统辅助设备 95 视听指示器 (AVI) 96 电池和电源 98 门挡和附件 100 吸气式烟雾探测器 VESDA 107 火焰和特殊危险探测器 108 本质安全 - MX 模拟可寻址探测器 110 本质安全 - 传统(不可寻址)探测器 113 本质安全隔离器/屏障 113 光束烟雾和线性热探测器117 探测器测试设备 120 国际防护等级 1
1 Naveen Kumar H 教授、2 MD Fatima Zohara 女士、3 Thaisin Banu 女士、4 Lubna V 女士、5 Kanis Fathima K 女士 Proudhadevaraya 理工学院,卡纳塔克邦 583201 摘要 该项目旨在设计和测试一种低成本、易于构建且无创的机械呼吸机,以缓解 COVID 19 大流行期间呼吸机的短缺。它利用单臂杆机构压缩袋阀面罩,无需人工操作。它还包括一个传感器和警报系统来监测压力率并在出现故障时发出警报。 介绍 呼吸系统疾病和损伤引起的呼吸衰竭是发达国家和欠发达国家的主要公共卫生问题。一种低成本呼吸机的原型已经使用 AMBU(人工手动呼吸装置)袋压缩制成,这有可能解决这一问题。它可以选择调整患者的 BPM(每分钟呼吸次数)、吸气与呼气比率和呼气速率 原型制作价格低于同时代产品,这使得它有可能大大减轻世界各地医疗保健系统的压力 过去几年,无线通信技术呈指数级增长,对医疗保健行业产生了巨大影响 现代呼吸机价格昂贵,维护成本高,使其更像是死刑而不是救命稻草。呼吸机用于重症监护医学家庭护理、急诊医学和麻醉学 如果呼吸因感染而困难,它们用于泵送空气以便于呼吸 新冠肺炎疫情让呼吸机成为人们关注的焦点,但由于成本原因,呼吸机严重短缺。需要一种简单且廉价的替代方案来处理呼吸紧急情况。
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
M.Tech. 课程内容 AS 3010 航空航天技术概论 3003 航天任务类型、环境、天体动力学:轨道力学基础(双体运动、圆周速度和逃逸速度、椭圆双曲和抛物线轨道运动);基本轨道机动。 火箭推进基础:上升飞行力学:运载火箭选择。进入大气层;进入飞行力学;进入加热。姿态确定和控制;基本概念;旋转动力学回顾;刚体动力学;扰动扭矩;被动姿态控制;主动控制;姿态确定。热控制、航天器功率、电信。 AS 5010 工程空气动力学与飞行力学 3003 流体力学基本方程。无粘流。流函数。速度势。二维不可压缩流:拉普拉斯方程及其解。翼型流;保角变换,薄翼型理论。有限机翼简介;普朗特升力线理论。边界层和分离对翼面流动的影响。大气。飞机基本性能评估。稳定性和控制简介。 AS 5020 气体动力学和推进要素 3003 气体动力学基本方程。一维等熵流。马赫波,冲击波。带有冲击、传热和摩擦的一维流动。二维冲击。普朗特-迈耶流。线性化二维亚音速流;普朗特-格劳特/戈特特变换。线性化超音速流;阿克雷特理论。吸气式和火箭推进系统的分类及其工作原理。螺旋桨理论,不同类型发动机的性能。高度和前进速度的影响。燃气涡轮发动机部件、构造和性能。 AS 5030 飞机和航空航天结构 3003 飞机分类、飞行原理、飞行控制、基本仪器和飞机系统、直升机机翼分析。剪切中心。封闭和开放管的弯曲和扭转。多室管。柱和梁柱。板和板桁组合的弯曲和屈曲。机身分析。实验技术;应变计、光弹性、离散和连续系统的振动。
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
商用运输飞机的结构载荷分析:理论与实践 TedL。Lomax,1996 航天器推进 Charles D. Brown,1996 直升机飞行动力学:飞行品质和仿真建模的理论与应用 Gareth Padfield,1996 飞机的飞行品质和正确测试 Darrol Stinton,1996 飞机的飞行性能 S. K. Ojha,1995 测试和评估中的运筹学分析 Donald L. Giadrosich,1995 雷达和激光截面工程 David C.Jenn,1995 动态系统控制简介 Frederick O. Smetana,1994 无尾飞机的理论与实践 Karl Nickel 和 Michael Wohlfahrt,1994 防御分析中的数学方法第二版 J. S. Przemieniecki,1994 高超音速气动热力学 John J. Bertin,1994 高超音速吸气式推进William H. Heiser 和 David T. Pratt,1994 实用进气气动设计 E. L. Goldsmith 和 J. Seddon,编辑,1993 国防系统的采办 J. S. Przemieniecki,编辑,1993 大气再入动力学 Frank J. Regan 和 Satya M. Anandakrishnan,1993 柔性结构动力学与控制简介 John L. Junkins 和 Youdan Kirn,1993 航天器任务设计 Charles D. Brown,1992 旋翼结构动力学与气动弹性 Richard L. Bielawa,1992 飞机设计:概念方法第二版 Daniel P. Raymer,1992 观测与控制过程优化 Veniamin V. Malyshev、Mihkail N. Krasilshikov 和 Valeri I. Karlov,1992 壳体结构的非线性分析 Anthony N. Palazotto 和 Scott T Dennis,1992 轨道力学 Vladimir A. Chobotov,1991 国防关键技术 空军技术学院,1991 国防分析软件 J. S. Przemieniecki,1991 超音速导弹进气口 John J. Mahoney,1991
目的:呼吸肺炎(AP)在全球范围内挑战公共卫生。这项研究的主要目的是确定通过合并检测方法评估AP患者的微生物学特征特征,包括常规微生物生物学测试(CMT),复杂感染检测(CCID)和元元素下一代测序(MNGS)(MNGS)。患者和方法:从2021年6月到2022年3月,包括3家医院的39例AP或社区获得性肺炎患者,具有吸气危险因素(ASPRF-CAP)。呼吸标本,包括支气管肺泡灌洗液(BALF),痰液和气管抽吸物,以进行微生物检测。结果:AP患者更倾向于年龄较大,从疾病发作到入院的持续时间较短,以较高的疾病患病率,尤其是糖尿病,糖尿病,慢性心脏病和脑血管疾病,并具有更高的curb-65分数(所有p <0.05)(所有p <0.05)。在AP和ASPRF-CAP的患者中,总共检测到总共213株和31个微生物菌株。AP中最常见的病原体是corynebacterium striatum(17/213,7.98%),铜绿假单胞菌(15/213,7.04%),克雷布斯ella肺炎(Klebsiella pneumoniae)(15/213,7.04%)和candida albicans(14/213,6.57%)。此外,ASPRF-CAP中最常见的病原体是白色念珠菌(5/31,16.13%),铜绿假单胞菌(3/31,9.68%)和肺炎Klebsiella pneumoniae(3/31,9.68%)。此外,肺炎(7/67,10.45%)和念珠菌(5/67,7.46%)是9名非影响AP患者中最常见的病原体。结论:在AP病例中检测到的普遍病原体是纹状体,铜绿假单胞菌,克雷伯氏菌肺炎和白色念珠菌。AP患者的早期合并检测方法提高了病原体的阳性检测率,并有可能加快适当的抗生素治疗策略的启动。关键字:抽吸,肺炎,微生物学,宏基因组下一代测序,芯片,合并检测