羧甲基κ-carrageenan(CMKC),具有不同程度的取代(DSS),在粘性或粘贴溶液中被γ辐照。成功合成化学交联的水凝胶对DS,浓度和辐射剂量的依赖性。CMKC-3S水凝胶的最高凝胶分数为76%,Ds为1.58。水凝胶在水和盐水中显示出不同的肿胀程度。在两个溶剂中,肿胀行为与时间对应于二阶动力学。在15 kGy时照射20%浓度的CMKC-3s的吸水率最高为334 g水/g干凝胶。选择的水凝胶作为伤口敷料的应用,在沙质土壤中和金属吸附剂中评估。作为伤口敷料,CMKC-2S和CMKC-3S水凝胶具有相当大的拉伸强度,吸收伪细胞外流体的能力,以及具有pH/电导率的提取物,有助于促进愈合。此外,基于MTT检验,CMKC-3S水凝胶没有细胞毒性潜力。作为沙质土壤中的水位,测试样品的0.1、0.3和0.5%CMKC-3S颗粒最初保留了25.1%,32.2%和42.6%的水,而单独的沙质土壤则为19.2%。在第7天,三个沙质土壤CMKC组仍然有13.7–29.3%的水,而对照组的水只有3.85%。在批处理吸附研究中,水凝胶吸附的Cu 2+,Zn 2+,CD 2+和Pb 2+重金属在溶液中的不同容量,CD 2+是高度吸附和PB 2+,最少。CMKC-3S水凝胶显示出最高的金属摄取和吸附效率,其次是CMKC-2S,然后是CMKC-1S。CMKC-3S水凝胶,进一步测试了pH效应,在中性pH值时表现出最佳的金属摄取。
1.引言木质素是一种结构复杂、难以水解的聚集体,木质素、纤维素和半纤维素是构成植物骨架的三大天然高分子化合物,它们的重量约占植物重量的20%。另外,全世界可以生产大量的木质素,木质素廉价、无毒、无污染,是优良的绿色化学原料[1,2]。造纸工业会产生大量的造纸废液,从造纸废液中提取的木质素被称为工业木质素[3,4]。因此,从工业木质素中提取的木质素不仅成本低廉、可再生降解,而且具有多种活性功能基团,受到了人们的广泛关注。例如木质素的主要化学成分是木质素磺酸盐(图1)和碱木质素,它们带有一些表面活性基团,如羧基、酚羟基等亲水基团以及丙基和苯环等疏水基团,因此木质素在油田化学品、表面活性剂、环保缓蚀剂、沥青改性剂等绿色化学领域具有潜在的原料作用[5-9]。张建军[10]用甲醛对木质素磺酸盐进行改性,发现改性后的羟甲基化木质素磺酸盐在室温下对基浆有增粘作用,高温老化后有降粘、降滤失的效果;胺化木质素可以有效改善油田污泥的松散性,提高油田污泥的吸水率[11]。陈[12]以木质素磺酸盐、甲醛和伯胺/仲胺为原料,制备了一系列木质素磺酸盐Mannich碱钻井液处理剂,结果表明这些化合物在水基钻井液中具有增黏、降滤失、耐高温等作用。目前工业木质素中仍含有颜色较深的半纤维素、无机盐、低聚糖等杂质,这些杂质可能会对工业木质素基钻井液的性能产生较大影响。
LCP 薄膜的材料特性及其在 IT 相关设备中的广泛应用 Sunao Fukutake、Hiroshi Inoue JAPAN GORE-TEX INC. 日本东京 摘要 全芳香族聚酯是一种超级工程塑料,因其环境兼容性、防潮性、尺寸稳定性和耐热性而被视为电子电路的基础材料。利用三种芳香族聚酯中耐热性最高的 I 型全芳香族聚酯,我们成功地将其制成具有高度可控取向的薄膜材料。这种液晶聚合物薄膜(以下简称 LCP 薄膜(I))具有高达 280°C 的良好耐焊锡耐热性和高尺寸稳定性。其吸湿膨胀系数为 1.5 ppm/%,热膨胀系数可控制以与铜箔(16ppm/°C)相匹配。此外,LCP 薄膜(I)的吸水率极低,仅为 0.1%,约为聚酰亚胺薄膜的 1/10,在高频范围内表现出色。值得注意的是,LCP 薄膜(I)的原材料是热塑性树脂,是一种可回收材料。凭借这些优势,LCP 薄膜(I)的应用已扩展到需要 HDI 和高频性能的 IT 相关设备的 PWB 和 IC 封装。背景在 IT 相关领域,传输和处理的信息量不仅对日常业务运营很重要,也是许多应用的卖点。在信息传输领域,需要将光纤(有线)传输和无线传输有效结合起来,在信息处理领域,需要提高计算机的处理能力。虽然硬件和软件领域的进一步技术进步对于满足上述需求至关重要,但在硬件领域,我们的技术可以做出贡献,呈现出以下趋势。首先,我们可以说光传输技术已成为信息传输领域的标准技术。相反,对于无线传输技术,所用材料(包括塑料)仍处于开发阶段,而设备和传输逻辑已经建立。在无线传输技术中,由于需要在单位时间内传输更多信息,未来将应用更高的频率范围;然而,没有一种材料具有低介电损耗和高稳定性,可以在高频范围内轻松使用。在信息处理领域,需要更高的时钟频率来提高计算机的处理能力,以及增加终端(I/O)的数量。实际上,具有上述特性的高速高性能LSI的开发正在迅速进展。该领域还需要具有极精细尺寸精度的材料,它不仅介电损耗低、高频范围稳定,而且可以作为基材支撑精细安装的端子。
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
