收稿日期: 2024−10−19 修回日期: 2024−11−13 接受日期: 2024−11−18 DOI : 10.20078/j.eep.20241104 基金项目: 国家自然科学基金资助项目 ( 62218901 ) 第一作者: 孙俊强 ( 2000— ), 男 , 广东珠海人 , 硕士研究生 , 主要研究方向为磁性分子印迹技术。 E-mail : sjq@gzhu.edu.cn 通讯作者: 瞿芳术 ( 1984— ), 男 , 福建宁德人 , 教授 , 主要研究方向为膜法水处理技术。 E-mail : qufs@gzhu.edu.cn
红外光谱法对催化剂研究的最重要应用是提供有关活性位点性质,其强度和浓度的信息的能力。强度通常与测试分子在吸附时的频移相关,尽管如果表面覆盖范围足够高,这些数据可能会因吸附层中的横向相互作用而扭曲。关于该位点浓度,其基于频带强度的测量值的估计使知道测试分子的吸收系数ε的必要性变得复杂,这可能会受到吸附的影响。CO具有某些优势作为氧化物吸附剂的测试分子。在非转变金属阳离子的电场中,唯一振动的频率定期变化,反映了路易斯酸位点的强度。,关于吸附CO的吸收系数的数据是相当矛盾的[1-4]。烈矿型沸石被广泛用于催化和环境保护中。冬日矿的催化特性取决于SIO 2 /Al 2 O 3摩尔比和电荷补偿阳离子的性质。在H-摩尔迪派中,最重要的特征是酸性OH基团的分布,这取决于框架中Al-Al-Al-tetrahedra的数量和分布。在[5]中,通过吸附CO的IR光谱估算了Lewis和Brønsted酸位点的数量以及硅烷酚基团的数量,而通过NMR数据测量了Alu-Minum的含量。沸石OH基团从3613转到3290 cm –1的偏移伴随着2175 cm –1的吸附CO带的生长(图1)。对应关系还不错,但是IR测量基于其他沸石获得的CO或OH组的ε值,尽管已知即使在相同的冬日岩结构中,桥接的Brønsted羟基也没有等效,并且在其位置上也有所不同。在这里,我们报告了综合灭绝系数和吸附焓的测量结果,用于在激烈岩上吸附的不同CO物种,SIO 2 /Al 2 O 3摩尔比〜15.0。在–196°C下进一步添加气体在2137 cm –1处导致条带,这是由于我们认为的,这是由于带有Siloxane bridgs的侧面复合物引起的[6]。按照[3]中描述的步骤,我们测量了从压力增加到从细胞底部提高样品到环境温度的吸附CO的数量。在2175 cm –1和2137 cm –1时,带为2175 cm –1 –1和2.0±0.1 cm/μmol的带为1.77±0.09 cm/μmol。
8。营销授权编号SER/IND/0119。首次授权日期/授权日期续期2015年2月5日/20020年2月6日10.文本的修订日期2023年7月
在简单立方晶格上存在吸引且不可穿透的表面的情况下,用数字方法研究了稀释极限下均聚双链 (ds) 脱氧核糖核酸 (DNA) 的熔化。DNA 的两条链用两个自避行走建模,能够在互补位点相互作用,从而模拟碱基配对。不可穿透表面的建模方法是将 DNA 构型限制在 z 0 平面,单体在 z = 0 处具有吸引相互作用。此外,我们考虑了 ds 段在 z = 0 占据的两种变体,其中计算了一个或两个表面相互作用。这种考虑具有重大影响,甚至会改变吸附状态下结合相的稳定性。有趣的是,吸附从临界变为一级,其修正指数与熔化转变相一致。对于模拟,我们使用修剪和丰富的 Rosenbluth 算法。
摘要。为了解决当今最严重的环境问题之一,减少了碳足迹,全球已将注意力转移到二氧化碳(CO 2)存储中,作为潜在的解决方案。由于其独特的功能,页岩是该领域最有趣的选择之一。吸附是CO 2通过页岩中的方法,尤其是在其超临界条件下的方法。吸附等温线模型可用于推断这种吸附的行为和机制。Langmuir,Freundlich,Dubinin-Astakhov(D-A)和Brunauer-Emmett-Teller(BET)模型是在页岩上可用于CO 2建模的众多模型之一。我们试图将这些模型拟合到本研究中从文献来源收集的实验数据中,集中在中国各个地方的四个独立的页岩样本上。是来自志留纪longmaxi组的LMX1和LMX2,来自Sichuan盆地的Ordovician Wufeng地层的WF1,以及Ordos盆地Yanchang组的YC。这些页岩的总有机碳(TOC)含量为3.19至4.27。在三个不同的温度下获得了用于拟合模型的实验数据:35、45和55°C。Langmuir和D-A型号为所有样品和温度提供了最适合数据的拟合。r²值0.93429(对于35°C时的YC岩石)至0.99287(对于WF1在35°C时为WF1),在35°C下为0.88879至0.99201 LMX1。这些模型的理论基础是代表页岩上超临界CO 2的物理性质和吸附动力学,这是其性能的原因。最后,这项研究增加了我们对页岩上CO 2吸附的理解,为未来的研究和CO 2存储中的潜在实际用途提供了有用的见解。但是,需要进行更多的研究,以完全了解各种页岩中CO 2吸附的机制和影响因素,以及开发用于预测这种行为的模型。
1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室
<卡拉布里亚大学化学与化学技术系有机合成实验室和化学制剂(Laborsy),通过P. Bucci,Cube 12c,6楼,87036,Rende,CS,CS,意大利B,意大利B物理化学实验室,用于高级技术和高级技术和高级技术和智能材料的实验室工业流程(PC-SMARTECH),卡拉布里亚大学化学与化学技术系,Via P. Bucci,Cube 15d,地下,87036,Rende,CS,CS,意大利CS,Calabria Ponte Bucci大学物理系CNR-Nanotec c/o Department of Physics, University of Calabria, Ponte Bucci, Cube 33b, 87036, Rende, Cosenza, Italy and advanced spectroscopy laboratory of the materials, Star IR, via Tito Flavio, University of Calabria, Italy FO Laboratory of Chemistry for Environment, Sila technological pole, University of Calabria, via Tito Flavio, via Tito Flavio. 87036,Rende,Cosenza,意大利