沸石是一种具有三维晶体结构的微孔铝硅酸盐矿物,其具有规则排列的大型开放空腔,形成笼状和通道。空腔由沸石的结构组成1,2)组成。它们的骨架由(SiO 4 ) 4-和(AlO 4 ) 5-四面体组成,两者都可以构建由单环4-、6-和8-,或双环4-4、6-6和8-8或支环4-1、5-1等组成的二级结构单元3)。骨架结构类型将决定表面积、孔径和孔隙率4)。与其他矿物相比,沸石具有多种优势,尤其是其作为离子交换剂、催化剂和吸附剂的功能。印度尼西亚四面环海,火山环纵横交错,具有丰富的天然沸石矿物资源 5, 6) 。沸石可用作催化剂、离子交换和吸附剂 6) 。一般而言,沸石矿物具有以下化学式 7) :
AVAXIM ® 80U PEDIATRIC 预充式注射器注射用混悬液 1. 药品名称 灭活甲型肝炎疫苗吸附 IP 2. 定性和定量组成 每剂 0.5 ml PFS 含有: 灭活甲型肝炎抗原…………… 80 Elisa 单位 (EU) [GBM(戈马林根村 + 患者姓名 BM)菌株,在 MRC-5 人二倍体细胞上培养] 以铝表示的氢氧化铝….. 0.15mg Al 3+ 苯氧乙醇 乙醇(50%v/v)溶液 - 2-苯氧乙醇,欧洲药典…………….. 2.5 µL - 无水乙醇,欧洲药典…………….. 2.5 µL 甲醛………………………………..12.5 µg 1x C 培养基199 Hanks(不含酚红)…………适量至 0.5mL 2.5 M 氢氧化钠…………………………………… 最高可达 pH 值 7.0±0.1 10% 盐酸………………………………………… 最高可达 pH 值 7.0±0.1 3. 官方药物形式 预充注射器中的注射用悬浮液。
电容去离子化是一种新兴的工业用海水淡化技术。电极设计和系统开发方面的最新进展已导致超高盐吸附性能的报道,有利于其在农业水处理中以低成本的潜在应用。在本研究中,我们全面总结了实现超高离子吸附性能的多孔电极设计策略,考虑了实验参数、化学调节的材料特性、氧化还原化学和智能纳米结构等因素,以供未来的电极设计使用。此外,我们努力建立电容去离子化 (CDI) 技术与其在农业领域的适用性之间的关联,特别是专注于水处理,重点是与盐度、硬度和重金属相关的不良离子,以实现无害灌溉。此外,为了确保 CDI 系统在农业中的高效和经济应用,我们对 CDI 成本分析的文献进行了全面概述。通过解决这些方面,我们预计超高盐吸附 CDI 系统在未来的农业应用中将大有可为。
有效的苯和环己烷对商品化学品的生产至关重要,并且是该行业中最具挑战性的分离之一。通过可回收,多孔固体的物理吸附在替代能源密集型的共济会或提取蒸馏方法方面具有重要的潜力。还原的石墨烯氧化物气凝胶(RGOA)是新兴材料,具有将2D石墨烯与普通3D材料连接独特性能的巨大希望。通过L-抗坏血酸,Bisuimbisuimphite的化学还原和(首次)(首次)通过动态气体吸附方法研究了苯甲酸,(首次)(首次)(首次)钠钠钠的苯/环己烷分离,并通过对Aerogelsical属性物理学的物理学物质进行了分析。 用二硫代石(RGOA_DTN)还原的气凝胶具有最高的还原度和比表面积(461.2 m2g-1),中孔的贡献最高。 它也是苯和环己烷最高摄取的样品。 RGOA_DTN上的二元分量吸附导致苯在2.1的环己烷上的吸附性的选择性。 吸附吸附研究证明了长期操作中吸附剂的出色热稳定性。 由于吸附能力与中孔无关,而与大孔表面积相关,因此吸附的选择性归因于气凝胶表面的不同物理化学结构。 结果表明,Rgoas可以是吸附性气相烃相距的多功能和灵活平台。通过L-抗坏血酸,Bisuimbisuimphite的化学还原和(首次)(首次)通过动态气体吸附方法研究了苯甲酸,(首次)(首次)(首次)钠钠钠的苯/环己烷分离,并通过对Aerogelsical属性物理学的物理学物质进行了分析。用二硫代石(RGOA_DTN)还原的气凝胶具有最高的还原度和比表面积(461.2 m2g-1),中孔的贡献最高。它也是苯和环己烷最高摄取的样品。RGOA_DTN上的二元分量吸附导致苯在2.1的环己烷上的吸附性的选择性。吸附吸附研究证明了长期操作中吸附剂的出色热稳定性。由于吸附能力与中孔无关,而与大孔表面积相关,因此吸附的选择性归因于气凝胶表面的不同物理化学结构。结果表明,Rgoas可以是吸附性气相烃相距的多功能和灵活平台。苯分子通过特定的c-h·×π相互作用强烈相互作用,而环己烷分子由于其形状/大小而被排除在气凝胶表面之外。
吸附/解吸等温线吸附等温线,Freundlich吸附等温线,归一化的E X变化等温线,BET方程;在有机表面和土壤材料的有机表面(农业系统中的效用引用)对离子的选择性和非选择性吸附。v公共溶解度平衡碳酸盐,铁X IDE和水力X,硅酸盐,磷酸铝;粘土的电化学特性(引用了农业用途的E X样本)。土壤的起源和微观形态:土壤604(2+0)
1。引言减少腐蚀带来的重大经济损失的最流行策略是使用有机抑制剂[1-5]。此外,正在进行研究以确定在非常低浓度的环境中是否可以使用腐蚀抑制剂。为了在低浓度的特定抑制剂的存在下达到高水平的保护效率,二级分子和/或离子通常需要通过合作吸附或腐蚀金属表面上的合作吸附或络合来增强抑制剂的吸附[6-10]。在当前工作中,检查了硫库的吸附及其在碳钢表面存在的锌离子存在下的潜在增强。酰胺化合物从历史上被认为是腐蚀强大的抑制剂[11-14]。因此,提高硫库抑制剂溶液对锌离子的吸附可能会导致高抑制效率。
尽管有许多效果来探索H-BN底物上石墨烯的电子结构,但H-BN层在石墨烯对吸附有毒气体分子的吸附行为上的含量仍然很少了解。在此,我们使用了基于密度功能理论(DFT)22,23的第一个原理方法来研究结构稳定性,以及对有毒气体分子吸附的石墨烯/H-BN异质结构的电子和电子传输性能。首先,我们对每个单层进行了DFT优化计算,然后校准了这些异质结构的能量效果,这是这两层之间的层间距离的函数,以获得最轻松的几何形状contriric contriric contration guration guration guration guration guration guration guration guration guration guration guration guration。将最稳定结构的电子性质与单层的电子特性进行了比较。然后,我们研究了原始石墨烯和石墨烯/H-BN的吸附机制,包括有毒气体的吸附,包括CO 2,CO,NO和NO 2。为了提高这些电子计算的可靠性,我们考虑了这些底物与吸附分子之间的VDW相互作用。为了评估石墨烯/H-BN异质结构作为晚期有毒气体传感器的选择性,我们还采用了非平衡性Green的功能形式,使用密度功能方法来计算这些吸附的系统中的电子传输特性。
分子氧与半导体氧化物表面的相互作用在许多技术中起着关键作用。这个主题很难通过实验和理论来实现,这主要是由于多种施加电荷状态,吸附氧气的吸附构和反应通道。在这里,我们使用非接触原子力显微镜(AFM)和密度功能性the-Ory(DFT)的组合来解决金红石TIO 2(110)表面上的吸附O 2,这在金属氧化物的表面化学中提出了长期的挑战。我们表明,通过氧气量终止的化学惰性AFM尖端可以很好地解决吸附物种和底物的氧气sublattice。吸附的O 2分子可以从表面接受一个或两个电子极性,形成超氧或过氧物种。在与应用相关的任何条件下,过氧状态是最优选的。非侵入成像的可能性使我们能够解释与尖端注入电子/孔注入相关的行为,与紫外光的相互作用以及热退火的效果。
储能系统可解决当前供需间歇性问题,从而提高能源效率。在众多可用技术中,热化学储能前景十分广阔。在这项工作中,我们首次通过实验研究了感应加热作为将电力系统与热能技术直接耦合的方法。该系统还允许在快速多重吸附 - 解吸循环控制中进行多种测量。在定制装置中实现 CaCl 2 -NH 3 加合物的吸附和解吸循环。铁丝和废红泥被研究作为潜在的感应材料。使用差示扫描量热法、热重法、扫描电子显微镜和比表面积对材料在 1、2 和 1000 次循环后的性能进行评估。废红泥表现出良好的感应潜力。在所有情况下,1000 次循环后均未观察到材料降解。与使用铁丝加热的样品相比,使用废弃红泥加热的样品具有更高的最大吸收容量(0.304 对 0.154 g NH3 /g CaCl2 )和解吸焓(716 对 460 KJ/ kg CaCl2 )。这被发现与含有红泥的样品的平均比表面积有关,该比表面积几乎是铁样品的两倍。我们希望这里提出的概念可以促进感应加热方向的研究,同时为废弃红泥产生新的利用途径。
最近,纳米技术在解决环境问题(例如废水处理)中起着重要作用。金属氧化物(例如铜氧化物和锌氧化物)在水纯化中起作用。因此,这项工作旨在使用环保和成本效益的生物吸附剂从合成废水样品中去除甲基蓝色染料;铜\氧化锌双金属(CuO \ ZnO)是通过使用Fussarium oxysporum提取物合成的,并通过等温和动力学研究评估了生物吸附性能。通过UV-VIS分光光度计和透射电子显微镜(TEM)表征了生物合成的Cuo \ ZnO纳米颗粒。从TEM显微照片中,CuO \ ZnO粒径范围为9-40 nm,UV分光光度法显示在241 nm处的特征峰。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。 实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。