摘要:在这项工作中,使用生物聚合物壳聚糖和天然粘土来获得复合材料。这项研究的总体目的是通过添加粘土来改善纯壳聚糖珠的性能(孔隙率,热稳定性和密度),并获得基于壳聚糖的复合材料,以使用蒙古资源从水溶液中吸附重金属,并使用蒙古资源来吸附重金属,并研究吸附机制。天然粘土用酸和热进行预处理以去除杂质。将壳聚糖和预处理的粘土以不同的比率(8:1,8:2和8:3)混合,以获得化学加工,以获得复合珠以吸附铬离子。研究了Cr(III)和Cr(VI)的吸附,这是溶液pH,时间,温度,铬溶液的初始浓度和复合珠的质量的函数。发现,从壳聚糖的混合物中获得的复合珠和质量比为8:1和8:2的粘土分别具有最高的吸附能力(23.5和17.31 mg·g -g -1),Cr(iii)和Cr(iii)和Cr(vi)的吸附能力分别为最佳条件。使用XRD,SEM -EDS,BET和TG分析研究了通过将壳聚糖和粘土混合为8:1和8:2的复合材料的性质。根据XPS分析结果讨论了吸附机制。可以证实,铬离子以其原始形式吸附,例如Cr(iii)和Cr(VI),而无需进行氧化或还原反应。此外,在吸附过程中,CR(III)和Cr(VI)与复合珠的羟基和氨基群有关。吸附过程的动力学,热力学和等温分析表明,壳聚糖/粘土复合珠与CR(III)和Cr(VI)离子之间的相互作用可以视为二阶入学热反应,因此可以使用langmuir iSotherm模型来评估吸附。可以得出结论,复合珠可以用作去除铬离子的吸附剂。
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
双链DNA(DsDNA)分子在氧化石墨烯(GO)表面上的吸附动力学非常重要,对于在生物传感器,生物医学和材料科学中的DNA/GO功能结构的应用至关重要。在这项工作中,分子动力学模拟用于检查GO表面上不同长度DsDNA分子(从4 bp到24 bp)的吸附。dsDNA分子可以通过末端底部吸附在GO表面并站立在GO表面上。对于短dsDNA(4 bp)分子,双螺旋结构被部分或完全损坏,吸附动力学受到短dsDNA的结构漏气的影响,并且在GO表面上氧化基团的分布。对于长dsDNA分子(从8 bp到24 bp)的吸附是稳定的。通过非线性插入DsDNA分子和GO表面之间的接触角,我们发现,如果DSDNA分子的长度长于54 bp,则吸附在GO表面上的DSDNA分子可以平行于GO表面。我们将这种行为归因于dsDNA分子的灵活性。随着长度的增加,dsDNA分子的灵活性也会增加,并且这种增加的功能使吸附的dsDNA分子更有机会使用自由末端来达到GO表面。这项工作提供了DSDNA分子在GO表面上吸附的全部图片,对于DNA/GO基生物传感器的设计应该有益。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
*PPI 人群包括在预定的天数内接种所有 3 种疫苗的个体,未在很大程度上偏离研究方案,在第 6 个月和第 7 个月就诊间隔内符合预定标准,在第 1 剂之前对相关 HPV 类型(6、11、16 和 18 型)血清呈阴性,并且在 16 至 26 岁女性中,在第 1 剂之前至第 3 剂后一个月(第 7 个月)对相关 HPV 类型的 PCR 呈阴性。 § mMU=毫默克单位。 ¶ p 值 < 0.001。 # 证明非劣效性需要 GMT 比率的 95% CI 的下限高于 0.67。 CI=置信区间。 GMT=几何平均滴度。 cLIA=基于 Luminex 的竞争性免疫测定。 N=随机分配到相应疫苗接种组并接受至少一针注射的人数。 n=参与分析的人数。
5化学系教授-DQ -CCT在过去的几十年中,在环境中的废水中发现了一些称为新兴的新污染物。这些污染物可以是药物,工业废物,农药等物质。此外,尚无对这些物质的组成和风险的全部了解,尽管这些物质以低浓度的形式可能存在于人们的环境和健康中(Zhao等,2024)。合成染料被广泛用于行业的各个部分,因为它们将颜色归因于与自然起源相比(Bakhnooh; Arvand,2024)更加稳定和便宜的产品。食品行业中使用最广泛的化合物之一是暮光黄色染料,其特征是橙色的颜色,它以几种饮料,糖果,冰淇淋,冰淇淋,蛋糕等以及其他产品(Balram等,2023)中存在。尽管有广泛的用途,但研究表明,大量食用时,该物质与健康问题有关,这可能导致过敏,皮肤刺激,突变,胃肠道疾病甚至癌症(Zhang等,2022)。此外,它代表了一个环境问题,因为它能够干扰水生生态系统,从而大大损害了存在的生物和动物(Abumelha,2024)。
人工智能(AI)有望创造和适当的业务价值的各种新机会。但是,许多组织,尤其是那些在传统行业中的组织 - 努力抓住这些机会。要解开根本原因,我们研究了更多传统行业如何实施预测性维护,这是AI在制造组织中的有希望的应用。为了进行分析,我们采用了多案例设计,并采用了关键的现实主义观点来确定AI实施的生成机制。总体而言,我们发现五种相互依存的机制:实验;知识建设和融合;数据;焦虑;和灵感。使用因果循环图表,我们充实了这些机制的社会技术动态,并探索实施AI的组织要求。生成机制的最终拓扑构成了对AI管理的研究,通过对塑造实施过程的因果关系的丰富见解。此外,它证明了因果环图如何改善生成机制的建模和分析。
给予prevenar®13或vaxNeuvance®的2剂时间表<37周的妊娠期与SMPC中详述的4剂时间表相反,但符合疫苗接种过早婴儿和绿本书第25章的建议。给予一剂prevenar®13或vaxNeuvance®的一剂主要系列,与SMPC中详述的2或3剂量主要时间表背道而驰,但符合绿书的建议和第25章。在12个月至2岁之间的先前未接种的个体的单剂时间表与Prevenar®13和VaxNeuvane®SMPC中详述的2剂时间表背道而驰,但符合国家建议对具有不确定或不完整的免疫状态和绿色书的第25章的个人疫苗接种的国家建议。在12个月至2岁之间的部分免疫个体的单剂量时间表与PreVenar®13或VaxNeuvance®的SMPC不一致,但与对具有不确定或不完整免疫状态不确定或不完整的免疫状态和绿色书的第25章的个人的国家建议相符。应根据下面的存储部分中详细介绍的条件存储疫苗。但是,如果这些疾病的无意或不可避免的偏差,请参阅疫苗事件指导。根据适用于继续使用的这些准则评估疫苗的情况,这将构成本PGD的标签外管理。建议在标签外推出疫苗的情况下,作为同意程序的一部分,请告知个人,父母或护理人员,该疫苗是在产品许可之外提供的,但根据国家指导。
** CMG 比率和 CI 是使用 t 分布计算的,其方差由血清型特异性线性模型估算,使用对数转换的天然抗体浓度作为响应,并使用疫苗接种组的单个项。 † 对 13 种共享血清型得出非劣效性的结论是基于 95% CI 的下限,即 IgG 反应率差异(Vaxneuvance - 13 价 PCV)> -10 个百分点或 IgG GMC 比率(Vaxneuvance/13 价 PCV)> 0.5。 ‡ 另外 2 种血清型的优越性结论是基于 95% CI 的下限,即 IgG 反应率差异(Vaxneuvance - 13 价 PCV)>10 个百分点或 IgG GMC 比率(Vaxneuvance/13 价 PCV)>2.0。 n = 随机分组、接种疫苗并参与分析的参与者人数。 CI=置信区间; CMG= 平均几何浓度(µ g/ml); IgG=免疫球蛋白G