增加的CO 2输出引起了极大的关注,CO 2吸附是一种高效捕获和利用这种温室气体的方法。在这项研究中,自然丰富的粘土土壤是否有可能应用作为CO 2捕获吸附剂的潜在应用。用磷酸(H 3 PO 4 -s)激活粘土土壤样品,以增加其纹理特性,尤其是其表面积和孔体积。这项工作包括有关土壤中二氧化碳吸附剂的酸激活过程的见解及其在固体吸附系统中的前瞻性用途。基于土壤的吸附剂的特征是X射线粉末衍射(XRD),Brunauer,Emmett和Teller(BET)和傅立叶变换红外(FTIR)光谱。用H 3 PO 4激活后,土壤的BET表面积增加到60.32 m 2 /g,这是未处理的土壤的两倍(23.39 m 2 /g)。微孔体积值; H 3 PO 4 -s(0.14 cm 3 /g)微孔体积值是未经处理的土壤(0.07 cm 3 /g)的两倍。这些增强的纹理特性允许更大的能力捕获和存储CO 2分子。与未经处理的土壤相比,H 3 PO 4 -S吸附剂获得了10.60 mg/g的吸附能力,酸处理的土壤的性能提高了16%。指实验发现,活化的土壤作为吸附剂显示出CO 2吸附能力的增长,进一步支持其作为有效的碳捕获吸附剂的潜力。关键字:CO 2吸附;化学激活;酸治疗;吸附剂
抽象的目标靶向肝硬化中细菌易位仅限于具有抗菌抗性风险的抗生素。这项研究探索了不可吸收,肠道限制的,工程化的碳珠吸附剂的治疗潜力,YAQ-001在肝硬化模型和急性 - 慢性肝衰竭(ACLF)模型中,以及在Cirrhosis的临床试验中的安全性和可耐受性。在体外评估了YAQ-001的设计性能。肝硬化和ACLF的两鼠模型(4周,带有或不含脂多糖的胆管连接),接受YAQ-001 2周;研究了6周接受YAQ-001的肝硬化(6周和12周碳四氯化碳(CCL4))的两种小鼠模型。器官和免疫功能,肠道通透性,转录组学,微生物组组成和代谢组学。在肠道器官上评估了粪便水对动物模型肠道通透性的影响。进行了28例肝硬化患者的多中心,双盲,随机,安慰剂控制的临床试验,用于3个月的4 gr/天YAQ-001。结果YAQ-001表现出内毒素的快速吸附动力学。体内,YAQ-001降低了肝损伤,纤维化的进展,门静脉高血压,肾功能障碍和ACLF动物的死亡率显着。对内毒素毒素严重性,多肌血症,肝细胞死亡,全身性炎症和器官转录组学的严重影响,观察到肝,肾脏,脑,大脑和结肠的炎症,细胞死亡和衰老的可变调节。YAQ-001在临床试验中被调节为设备的安全性和耐受性的主要终点。YAQ-001降低了器官中的肠道渗透性,并对微生物组组成和代谢产生了积极影响。结论本研究为肝硬化患者提供了强烈的临床前原理和安全性,以允许临床翻译试验登记编号NCT03202498
在这项研究中,探索了由RGO,Fe 3 O 4和ZRO 2 NP组成的三元纳米复合材料的合成和表征。纳米复合材料可能有助于从水溶液中去除Terasil Black Dye,在这种情况下对纺织业非常重要。纳米复合材料是通过共沉淀法合成的,并与ZRO 2 NP进行了物理键合。X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和能量分散X射线(EDX)分析用于揭示纳米复合材料的结构特性,表面形态和元素组成。从这些信号中,可以推断出存在一个无定形相,如各种晶格平面的强峰位置所示。FESEM图像显示出不规则的粒子形状,并注意到聚集。EDX分析已被用来确认存在成分元素的存在。Giles所说的吸附等温线显示了S形,这意味着染料离子垂直于纳米复合材料的表面。在这些放热吸附过程中,物理较高的体温占优势。此过程遵循Freundlich等温模型,表明在分析吸附数据后存在异质表面积。在此模型中,建议进行化学和物理吸附,随着温度范围的相对贡献的变化而发生。这些发现对RGO /FE 3 O 4 /ZRO 2纳米复合材料具有重要意义,以进行废水处理优化,因为它们阐明了这些材料上染料吸附的动力学和热力学。
不同生态系统中有毒重金属的普遍存在提出了环境挑战,需要及时解决以维护人类健康和生态平衡。开发用于保护废水以保护水居民和人类生命的方法是一种公开义务。重金属离子水污染是最严重的环境问题之一。这是不受限制的,不受管制的工业废水以及农业和灌溉排水方案,这些方案将污水直接倒入水体中。这种不负责任的废物处理方法导致了超过建议安全限制的水污染物的浓度。例如,钢铁部门释放铅离子。铅也从酸电池,含铅汽油的燃烧,四乙基铅作为汽油中的抗旋转剂的非法使用中释放到环境中,
直接空气捕获(DAC)对于在2050年之前实现零净温室气体排放很重要。但是,使用吸附 - 吸附过程,超大型大气CO 2浓度(〜400份)为高CO 2捕获能力构成了强大的障碍。在这里,我们提出了刘易斯酸碱相互作用 - 与多胺-CU(II)复合物衍生的杂化杂交吸附剂,可实现超过5.0 mol的CO 2捕获/kg吸附剂,其容量是迄今为止大多数DAC吸尘器的容量近三倍。杂交吸附剂(例如其他基于胺的吸附剂)在小于90°C下的热解吸。此外,海水被证实为可行的再生剂,而解吸的CO 2同时被隔离为Innocte Innocte-Inocte ous,化学稳定的碱度(Nahco 3)。双模式再生提供了独特的灵活性,并以海洋作为脱碳水槽的促进,以扩大DAC的应用机会。
(1)开发与碳捕获和利用率及规模相匹配的 RCC 技术(2)RCC 系统在转换过程中不得损害捕获材料(即捕获材料必须可回收利用)(3)由吸附剂和催化活性组分组成的双功能材料。例如,氧化钙 (CaO) 可用作吸附剂,金属物质可催化吸附的 CO2 的转化。
摘要:由于断电风险高,热驱动吸附式制冷机越来越受到关注。为了提高制冷机的效率,必须生产和检查新的吸附剂。在本研究中,测试了四种新开发的硅基多孔材料,并将其与通常与水搭配使用的吸附剂硅胶进行了比较。进行了使用压汞法、气体吸附和动态蒸汽吸附的扩展吸附测试。使用扫描电子显微镜确定样品的形态。使用同时热分析和激光闪光法确定热性能。本研究分析的金属有机二氧化硅 (MOS) 纳米复合材料的热性能与常用硅胶的热性能相似。MOS 样品的热扩散系数在 0.17–0.25 mm 2 /s 范围内,而硅胶的热扩散系数约为 0.2 mm 2 /s。AFSMo-Cu 测得的水吸附容量最高,为 33–35%。对于窄孔硅胶,质量吸收率约为 25%。在水吸附的情况下,观察到吸附剂的孔径至关重要,孔径大于 5 nm 的吸附剂最推荐与水配合使用。
密度功能理论计算以研究li +和li对二十四种吸附剂的吸附特性,该吸附剂是通过替换冠状动脉(C 24 H 12)和car钙烯(c 54 H 18)的c原子获得的二十四种吸附剂(C 54 H 18)。分子静电电势(MESP)分析表明,这种替换会导致分子中富含电子环境的增加。li +在所有吸附剂上都相对强烈吸附。Li +(E ADS-1)在所有吸附剂上的吸附能在-42.47(B 12 H 12 N 12)至-66.26 kcal/mol(M-C 22 H 12 t bn)的范围内。我们的结果表明Li +和纳米片之间的相互作用更强,因为最深的纳米片的最深MESP会变得更加负面。LI +和纳米片之间的更强相互作用将更多的电子密度推向LI +。li在所有吸附剂上都弱吸附。Li(E ADS-2)对所有吸附剂的吸附能在-3.07(B 27 H 18 N 27)至-47.79 kcal/mol(C 53 H 18 SI)的范围内。假设纳米液块是锂离子电池的阳极,则预计细胞电压(v单元)在24 H 12,C 12 H 12 SI 12,B 12 H 12 N 12,C 27 H 18 SI 27 SI 27 si 27 si 27 h 12 h 12 si 12,c 12 H 12 si 12,b 27 si 27和b 27 h 18 n 27 n 27 n 27 n 27 n 27 n 27中相对较高(> 1.54 v)。E ADS-1数据与E ADS-2相比仅显示很小的变化,因此,E ADS-2对V细胞的变化具有很强的影响。
摘要。如今,世界上水污染的状况越来越严重,这引起了广泛的关注。 传统的水污染处理技术主要包括膜分离方法,催化剂治疗和吸附剂治疗以及纳米水污染处理技术的优势比传统技术更大。 ,例如纳米 - 光催化剂,纳米滤膜,纳米吸附剂。 例如,MOF材料,无机膜,聚合物膜和由铁金属氧化物和过渡金属氧化物组成的纳米吸附剂。近年来,随着纳米技术的持续发展,上述文章中提到的纳米材料技术在处理污染物或不含污染物中的纳米材料技术表现出了出色的表现。 本文主要阐述其各自的优势和一般绩效,并选择相关技术的示例进行讨论。 在此基础上,通过分析文章中引用的研究示例的相关原则和数据,我们可以为未来的研究提供某些想法和开创性的想法。如今,世界上水污染的状况越来越严重,这引起了广泛的关注。传统的水污染处理技术主要包括膜分离方法,催化剂治疗和吸附剂治疗以及纳米水污染处理技术的优势比传统技术更大。,例如纳米 - 光催化剂,纳米滤膜,纳米吸附剂。例如,MOF材料,无机膜,聚合物膜和由铁金属氧化物和过渡金属氧化物组成的纳米吸附剂。近年来,随着纳米技术的持续发展,上述文章中提到的纳米材料技术在处理污染物或不含污染物中的纳米材料技术表现出了出色的表现。本文主要阐述其各自的优势和一般绩效,并选择相关技术的示例进行讨论。在此基础上,通过分析文章中引用的研究示例的相关原则和数据,我们可以为未来的研究提供某些想法和开创性的想法。
表 1. 基准情景比较 ...................................................................................................................................... 24 表 2. 天然气发电情景比较 ...................................................................................................................................... 27 表 3. EfW 情景 ...................................................................................................................................................... 30 表 4. 水泥情景 ...................................................................................................................................................... 34 表 5. 质量和影响评级定义 ............................................................................................................................. 36 表 6. 基于影响和质量评级的不确定性评级摘要 ............................................................................................. 36 表 7. 模型设置假设 ...................................................................................................................................... 36 表 8. 资本成本假设 ............................................................................................................................................. 37 表 9. 运营成本假设 ............................................................................................................................................. 38 表 10. 天然气基准 – 配置摘要 ............................................................................................................................. 40 表 11. 天然气基准 – 资本成本 ............................................................................................................................. 43 表 12. 天然气基准 – 年平均运营成本........................................................................................... 44 表 13. 天然气基准 – CO 2 捕获的平准成本 .............................................................................................. 44 表 14. 天然气基准 – 对产品成本的影响 ........................................................................................................ 45 表 15. 天然气基准 – 建模假设摘要 ...................................................................................................... 46 表 16. 高级胺 – 天然气配置摘要 ............................................................................................................. 48 表 17. 高级胺 – 天然气资本成本 ............................................................................................................. 51 表 18. 高级胺 – 天然气年平均运营成本 ............................................................................................. 52 表 19. 高级胺 – 天然气 CO 2 捕获的平准成本 ............................................................................................. 52 表 20. 高级胺 – 天然气对产品成本的影响 ............................................................................................. 54高级胺 – 气体建模假设摘要 ................................................................................................................ 55 表 22. 热碳酸钾 – 气体配置摘要 .............................................................................................................. 57 表 23. 热碳酸钾 – 气体资本成本 ................................................................................................................ 60 表 24. 热碳酸钾 – 气体年平均运营成本 ...................................................................................................... 61 表 25. 热碳酸钾 – 气体 CO 2 捕获平准化成本 ............................................................................................. 61 表 26. 热碳酸钾 – 气体对产品成本的影响 ............................................................................................. 63 表 27. 热碳酸钾 – 气体建模假设摘要 ............................................................................................................. 64 表 28. EfW 基准 - 配置摘要 ............................................................................................................................. 66 表 29. EfW 基准 - 资本成本 ............................................................................................................................. 70 表 30. EfW 基准 - 年平均运营成本 ............................................................................................................. 71 表31. EfW 基准 - CO 2 捕获的平准化成本 ...................................................................................................... 71 表 32. EfW 基准 - 对产品成本的影响 .............................................................................................................. 72 表 33. EfW 基准 - 建模假设摘要 ............................................................................................................. 73 表 34. 高级胺 - EfW 配置摘要 ...................................................................................................................... 75 表 35. 高级胺 - EfW 资本成本 ...................................................................................................................... 79 表 36. 高级胺 - EfW 年平均运营成本 ............................................................................................................. 80 表 37. 高级胺 - EfW CO 2 捕获的平准化成本 ............................................................................................. 80 表 38. 高级胺 - EfW 对产品成本的影响 ............................................................................................................. 82 表 39. 高级胺 - EfW 建模假设摘要 ............................................................................................................. 83 表 40. 热碳酸钾 - EfW 配置摘要 ................................................................................................ 85 表 41. 热碳酸钾 – EfW 资本成本 .................................................................................................. 88 表 42.热碳酸钾 – EfW 平均年运营成本 .............................................................................................. 89 表 43. 热碳酸钾 – EfW CO 2 捕获平准化成本 .............................................................................. 90 表 44. 热碳酸钾 – EfW 对产品成本的影响 ............................................................................................. 91 表 45. 热碳酸钾 – EfW 建模假设摘要 ............................................................................................. 92 表 46. 非胺溶剂 – EfW 配置摘要 ............................................................................................................. 94 表 47. 非胺溶剂 – EfW 资本成本 ............................................................................................................. 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ............................................................................................. 97 表 49. 非胺溶剂 – EfW CO 2 捕获平准化成本 ............................................................................................. 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 .............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 年平均运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ...................................................................................................... 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111非胺溶剂 – EfW 资本成本 ...................................................................................................................... 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ...................................................................................................... 97 表 49. 非胺溶剂 – EfW CO 2 捕获的平准化成本 ...................................................................................... 97 表 50. 非胺溶剂 – EfW 对产品成本的影响 ...................................................................................................... 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 ............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 平均年运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获的平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ................................................................................................ 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111非胺溶剂 – EfW 资本成本 ...................................................................................................................... 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ...................................................................................................... 97 表 49. 非胺溶剂 – EfW CO 2 捕获的平准化成本 ...................................................................................... 97 表 50. 非胺溶剂 – EfW 对产品成本的影响 ...................................................................................................... 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 ............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 平均年运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获的平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ................................................................................................ 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111........................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 .............................................................................................. 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 .............................................................................................. 111........................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 .............................................................................................. 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 .............................................................................................. 111