随着经济发展的迅速发展,大量污染物被排放到水环境中,从而严重污染了当地可用的淡水资源[1,2]。在全球范围内,近年来水污染已成为一个热门话题。为了解决这个问题,研究人员提出了化学降水,膜分离,离子交换,蒸馏,吸附和其他技术[3-10]。通常,由于简单的操作过程,普通的吸附剂已被广泛用于水处理领域。它的基本吸附原理是传质过程,其中吸附物从液相转移到通过物理和/或化学作用结合的吸附剂表面。然而,由于次要污染,低恢复和/或低吸附效率,大多数吸附剂在实际应用中受到限制消费,环境保护和简单的再生过程[11-14],这被视为有前途的水处理策略。要选择适当的策略,有必要讨论不同电通系统的吸附机制,主要体系结构,电极材料和应用。
这项研究重要的是研究合成参数的影响(重载比率CNC:Fe 2 O 3,超声处理温度,超声处理时间)对用氧化铁(Fe 2 O 3)纳米粒子进行修饰的纤维素纳米晶体(CNC)。CNCS/Fe 2 O 3通过超声辅助化学共沉淀方法合成了吸附剂。使用批处理吸附研究,使用线性烷基磺酸盐(LAS)从洗衣废水中去除所有合成样品。使用FTIR,TGA,N 2吸附 - 解吸和SEM-EDX分析,对CNCS/Fe 2 O 3的吸附剂进行了表征,以了解其化学和物理性质。在CNC的1:1.5比率的比例为1:1.5的比例:Fe 2 O 3,80°C的超声处理温度和90分钟的超声处理时间,LAS的去除率最高,而LAS的去除率为±90%。FTIR分析揭示了CNC和CNCS/Fe 2 O 3吸附剂中的几个官能团。CNC分别在3000 - 3400 cm -1和1640 cm -1的光谱周围显示了木质素中的羟基和芳族环。由于氧化铁的形成,将CNC中羟基的宽肩部降低至小峰。来自TGA分析的热分析显示,由于纤维素结构的破坏,重量损失约为50 - 200°C。对于N 2吸附解析分析,与CNC相比,CNCS/Fe 2 O 3吸附剂表现出更大的表面积,在CNC中可以观察到多孔结构在CNC/Fe 2 O 2 O 3的Adsorbent中,来自SEM形态。总体而言,通过超声辅助共同沉淀方法添加Fe 2 O 3有助于开发CNCS结构,同时更改CNCS/Fe 2 O 3的性能,作为在洗衣房施用中LAS的潜在吸附剂,从而对水平处理的实用解决方案进行了避开水平处理。
使用两种硅烷(((3-氨基丙基) - 三乙氧基菌)和(3-甲基丙基) - 三乙氧基硅烷)进行官能化,以分别获得生态友好型胺功能化的GO(GONH)和硫醇功能功能(GOSH)。两个硅烷也被一起使用,以获得胺 - 硫醇双官能化的GO(GOSN)。获得了各种物理化学特征,包括使用傅立叶转换红外(FTIR)光谱仪,热重分析仪和X射线衍射仪的光谱。吸附剂用于对水溶液中Cr吸附的比较研究。将所获得的数据拟合到伪优先(PFO)和伪秒阶(PSO)模型,均质分形伪秒(FPSO)以及Weber-Morris - 莫里斯 - 摩尔斯 - 摩尔斯 - 莫里斯(Weber-Morris)内膜内颗粒扩散(IPD)动力学模型。计算了Langmuir和Freundlich吸附等温模型以及热力学的模型参数。表征结果显示成功的功能化。GONH,GOSH和GOSN分别在水中表现出碱性,酸性和中性pH。胺和硫醇官能团,以及降低的顺序。吸附剂比原始GO具有更高的每单位重量密度,并且热稳定性更好。平衡Cr吸附。PSO和FPSO更好地描述了速率数据。随着溶液的pH含量,Cr吸附降低;最佳吸附在pH 2处记录。吸附过程是理论上的放热过程,即自发过程。平衡吸附数据拟合了GONH的Langmuir吸附等温线模型,而它为GOSH和GOSN拟合了Freundlich。这些吸附剂的Cr吸附能力分别为114、89.6和173 mg/g,分别为GONH,GOSH和GOSN,并且这些吸附能力比几种报道的基于石墨烯的吸附剂要好,并提出了这些吸附剂的潜力。©2020水环境联合会
为了验证新型处理技术对地下水中多氟烷基和全氟烷基物质去除效果,项目团队将进一步研究现场吸附剂再生的潜力。吸附剂再生可以通过直接破坏吸附在过滤介质上的 PFAS(例如热处理、电化学处理或声/超声波处理)或将吸附的 PFAS 洗脱到小液体基质中来实现。本研究旨在展示后一种概念,其中小批量的含 PFAS 液体再生剂将随后使用由 NAVFAC 总部资助的项目开发的中试规模超声波分解反应器进行破坏。
由于人类和动物的疾病治疗日常食用而导致的水生环境中药物残留物的抽象积累会导致长期影响。这项研究评估了基于聚合物的吸附剂,1,3-二氨基丙烷修饰的聚(丙烯腈 - 丙烯酸)(DAP-POLY(ACN/AA)),用于吸收多克塞环(DoxycyCycline(dox)(dox)和mefeanamic losic(mefa)的吸附剂。正如FTIR光谱和微分析结果所暗示的,聚(ACN/ AA)共聚物与DAP的化学修饰成功。SEM分析表明,与聚(ACN/AA)共聚物(133 nm)相比,修饰的共聚物具有较大的粒径,为156 nm。研究了吸附剂剂量,接触时间,pH和初始浓度对DOX和MEFA化合物吸附的影响。DIV> DOX和MEFA的动力学研究非常适合伪二级模型,化学吸附是速率控制的步骤。平衡等温线在以下顺序上具有适当性:Langmuir模型> Freundlich模型> Temkin模型。DOX和MEFA的最大吸附能力分别为210.4 mg/g和313.7 mg/g。出色的高吸附能力表明,DAP-修改的聚(ACN/ AA)共聚物是治疗吸附系统中DOX和MEFA轴承废水的潜在吸附剂。关键字:共聚物;强力霉素;等温;动力学药物;甲酸酸;聚(丙烯腈 - 丙烯酸)
水污染是由人类活动引起的严重环境问题。一组在环境中不受控制但对生态系统造成有害影响的污染物被称为新兴污染物。在水体中检测到的这些新兴污染物之一是药物化合物。药物化合物作为污染物引起的主要问题之一是细菌耐药性。四环素是一类常用的抗生素。由于吸收性差,它们作为活性成分通过粪便和尿液释放到环境中。废水处理分为三个阶段:初级、二级和三级处理。三级处理采用反渗透、氧化还原、紫外线照射和吸附等方法。吸附被使用是因为它是一种简单有效的方法。在选择有效的吸附剂材料时,要考虑表面积、孔隙率、吸附容量、机械稳定性以及盈利能力、再生、可持续性和选择性等因素。本综述分析了常用于处理四环素污染水的吸附剂。所用的吸附剂一般分为金属材料、聚合物、陶瓷、复合材料和基于生物质的材料。
Zaworotko 教授还因其“SYNSORB – SYNergistic SORBents”项目获得了近 250 万欧元的奖金。该项目将通过单步净化工艺解决气体和蒸汽净化的高能耗问题,该工艺涉及使用新一代固体材料,即吸附剂。这些吸附剂就像海绵一样吸附杂质,可以自发捕获杂质,并在温和加热时释放杂质。最重要的蒸汽是水蒸气。大气中到处都有水蒸气,即使在最干旱的地区也是如此,但使用现有的干燥剂从水蒸气中获取纯水会消耗大量能源,因此尽管人类面临水资源压力,但这种方法在商业上不可行。二氧化碳和乙炔等气体是商品生产中的杂质,必须使用通常涉及化学反应的工艺将其去除。这些工艺总共消耗了全球约 20% 的能源供应,对水和工业商品的需求持续增长。我们的目标是发现和开发新的吸附剂,将这些过程的能源足迹降低 50-90%,从而显著降低这些过程的能源足迹,进而减少碳足迹。”
所有先前被确定为获得书面认证的吸附剂的产品,证实了其从EPA中获得的书面认证,直到2025年12月12日至2025年12月12日,所有吸引人的产品都必须已根据第300.955(a)和(b)条提交了修订的信息,并满足任何相关清单要求,并在新的Sorbent产品列表中列出了任何相关清单。EPA将不再在2023年12月11日之后签发吸附产品的书面证书。符合2023 S子部分要求的吸尘器产品将在公开可用的吸令产品列表中列出。不需要为仅由材料或任何组合组合的吸附产品提交技术数据,这些产品在§300.915(g)(g)(1)的定义中确定了材料的任何组合;这些材料自动包含在吸附产品列表中,作为通用吸附剂,无需采取进一步的措施。请参阅第5章吸附剂和此指南的吸附产品清单,以获取更多信息。
摘要通过一种简单的一步水热法获得了一种高度机智,环境和可回收的磁性蒙脱石复合材料(MMT/CF),并表现出极好的PB(II)去除。随后,AS合成的吸附剂的特征是XRD,SEM-EDX,FTIR,BET和TGA-DTA。研究了工作参数,包括吸附剂剂量,初始PB(II)浓度,溶液pH和时间。另外,在MMT/CF中,在响应表面方法(RSM)和人工神经网络(ANN)之间形成了比较方法,以优化和建模PB(II)的去除效率。结果表明,考虑到其更高的相关系数(R 2 = 0.998)和较低的预测误差(RMSE = 0.851并添加= 0.505),ANN模型比RSM更精确且非常受信任的优化工具。langmuir等温线,提供了对实验数据的最佳拟合度,最大吸附能力为101.01 mg/g。此外,动力学研究表明,伪二阶模型与实验数据非常适合。磁MMT/CF复合材料具有高吸附能力,适合重复使用。因此,这项研究表明,MMT/CF复合材料可能是Pb(II)从水性培养基吸收中的潜在吸附剂。
1里加技术大学,材料科学和应用化学学院,通用化学工程研究所,鲁道夫斯Cimdins Cimdins Riga Riga Biomaterials Innovations Innovations Innovations Innovations Innovations and Development Center,Pulka Street 3,LV-1007 LATVIA,拉脱维亚2号Riga 2工程,粉末材料科学实验室和航空学研究所,吉帕拉斯街6B,LV-1048拉特维亚,拉特维亚4里加技术大学,里加技术大学,通用化学工程研究所,里加技术大学,3/7 PaulaValdena Street,LV-1048 Riga,Latvia,Latvia,Latvia *通信:Kristine.irtise.irtise.irtise.irtiseva@ristise@recter:sterce@recties@rectection extriuse@recter:sterce extriuseva@rection@rection extry:1.23 31 stun.lv ster,1月31日。接受:2023年11月17日;出版:2024年5月13日摘要。对天然起源的吸附剂越来越兴趣,这些吸附剂可再生,有效且能够治疗被石油产品污染的水。目前的论文调查了一种新型的基于生物的“泥炭 - 花费的咖啡地” SCG-HP Bio-base Composite Pellets,作为溢出油产品的透视吸附剂。描述了SCG-HP基于沉淀形式的基于SCG-HP的复合材料的制备和表征。这项研究使用同质泥炭(HP)作为一种有效的天然粘合剂。与HP不同比例(从12 wt%到50 wt%)的SCG用于不同类型的SCG-HP肉芽吸附剂。获得的颗粒尺寸为2至6 mm,总孔隙率为56-61%。研究了测试油的吸附(新鲜机油飞行员10W-40 SJ/CF)。吸附研究显示,SCG-HP颗粒的最大吸附(容量)从90 wt%到125 wt%。关键词:花费的咖啡地,吸附,基于泥炭生物的复合材料,漏油,可持续生产,废物回收。