本文介绍了基于金属有机骨架 (MOF) 晶体表征的孔径分布分析,这些金属有机骨架具有分级孔系统 DUT-32、DUT-75、UMCM-1 和 NU-1000,并利用它来了解这些独特孔结构中的气体吸附。统计分析用于有效地将孔隙空间划分为由孔径标记的不同区域。在模拟 87 K 氩气吸附期间,该孔描述用于发现吸附质相对于不同孔隙的位置。为了进一步研究吸附行为,开发了一种聚类孔隙环境以定位孔隙中心的方法。这些孔隙中心用于观察孔隙内气体的分布,从孔隙中心的独特视角描述填充事件期间的吸附质位置。本文介绍的方法提供了有关孔隙结构和吸附特性的无与伦比的信息,这些信息无法通过现有方法获得,现在可以应用于新材料以揭示新的吸附过程。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
在本报告中,我们描述了在 NeurIPS 2021 上举办的开放催化剂挑战赛,该挑战赛的重点是使用机器学习 (ML) 来加速寻找可以驱动将可再生能源转化为可储存形式的反应的低成本催化剂。具体来说,挑战赛要求参与者开发用于松弛能量预测的 ML 方法,即给定吸附质-催化剂系统的原子位置,目标是预测系统松弛或最低能量状态的能量。为了在这项任务上表现出色,ML 方法需要近似密度泛函理论 (DFT) 中的量子力学计算。通过对这些进行准确建模,可以估计催化剂对化学反应总体速率的影响;这是筛选潜在电催化剂材料的关键因素。挑战赛鼓励整个社区在这项任务上取得进展,获胜方法将直接松弛能量预测相对于之前的最先进水平提高了约 15%。
摘要:等离子体诱导光催化是一种降低传统热分解温度的有效方法,已被用于甲烷脱氢。本文,我们利用时间相关密度泛函理论,通过分子轨道洞察,探讨了等离子体诱导甲烷在四面体 Ag 20 纳米粒子上解离的微观动力学机制。我们巧妙地通过 Hellmann-Feynman 力建立了化学键和分子轨道之间的关系。时间和能量分辨的光载流子分析表明,由于 Ag 纳米粒子和 CH 4 轨道的强杂化,在低激光强度下,从 Ag 纳米粒子到甲烷的间接热空穴转移主导光反应,而间接和直接电荷转移共存,促进甲烷在强激光场中的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调了分子轨道方法在吸附质-底物体系中的广阔前景。关键词:局域表面等离子体、甲烷脱氢、光载流子动力学、分子轨道洞察、实时时间相关密度泛函理论
摘要 高熵材料因其结构的复杂性和性能的优越性已被广泛证实是一种可能的先进电催化剂。人们已做出大量努力来模拟高熵催化剂的原子级细节,以提高自下而上设计先进电催化剂的可行性。在本综述中,首先,我们概述了基于密度泛函理论的各种建模方法的发展。我们回顾了用于模拟不同高熵电催化剂的密度泛函理论模拟的进展。然后,我们回顾了用于电催化应用的高熵材料模拟的进展。最后,我们展示了该领域的前景。缩写:HEMs:高熵材料;CCMs:成分复合材料;DFT:密度泛函理论;LDA:局部密度近似;GGA:广义梯度近似;VASP:维也纳从头算模拟软件包;ECP:有效核势; PAW:投影增强波势;VCA:虚拟晶体近似;CPA:相干势近似;SQS:特殊准随机结构;SSOS:小集有序结构;SLAE:相似的局部原子环境;HEA:高熵合金;FCC:面心立方;BCC:体心立方;HCP:六方密堆积;ORR:氧还原反应;OER:氧化物析出反应;HER:氢析出反应;RDS:限速步骤;AEM:吸附质析出机理;LOM:晶格氧氧化机理;HEOs:高熵氧化物;OVs:氧空位;PDOS:投影态密度;ADR:氨分解反应;NRR:氮还原反应;CO 2 RR:CO 2 还原反应;TMDC:过渡金属二硫属化物;TM:过渡金属; AOR:酒精氧化反应;GOR:甘油氧化反应;UOR:尿素氧化反应;HEI:高熵金属间化合物。
