表观转录组修饰在翻译调控中至关重要,对于维持细胞稳态至关重要。N6 甲基腺苷 (m 6 A) 是最丰富且保存良好的表观转录组修饰之一,已知其在神经元功能的各个方面发挥着关键作用。然而,m 6 A 修饰在活动介导的翻译调控和突触可塑性方面的作用尚未研究。在这里,我们研究了 m 6 A 修饰在响应 NMDAR 刺激时的作用。我们一直观察到 5 分钟 NMDAR 刺激会导致 eEF2 磷酸化增加。相应地,NMDAR 刺激在 5 分钟时间点导致 m 6 A 信号显著增加,与整体翻译抑制相关。NMDAR 诱导的 m 6 A 信号增加伴随着 m 6 A 标记 RNA 从翻译到非翻译核糖体池的重新分布。 m 6 A 水平的增加与 NMDAR 刺激下观察到的 FTO 水平降低有很好的相关性。此外,我们还表明,抑制 FTO 可防止 NMDAR 介导的 m 6 A 水平变化。总体而言,我们的结果建立了基于 RNA 的分子读数,它与 NMDAR 依赖的翻译调控相关,有助于理解蛋白质合成的变化。
van der waals(vdw)磁铁吸引了候选者,以实现利用当前磁化控制的自旋设备(例如,切换或域壁运动),但到目前为止的实验演示很少,部分原因是与这些系统中的磁化化相关的挑战。广场氮胶菌(NV)显微镜可以在整个VDW薄片上进行快速,定量的磁成像,非常适合捕获由于电流而导致的微磁性结构的变化。在这里,我们使用广场NV显微镜研究VDW Ferromagnet Fe 3 Gete 2(FGT)的薄片(约10 nm)中电流注射的影响。我们首先观察到在单个域水平上降低电流的固定性,其中FGT中的电流注入会导致局部逆转磁化所需的磁场大幅减少。然后,我们探讨了电流诱导的域壁运动的可能性,并为在相对较低的电流密度下提供了这种运动的初步证据,这表明我们设备中存在强电流诱导的扭矩。我们的结果说明了广场NV Mi-Croscopy对VDW磁体中的Spintronic现象的成像的适用性,突出了直接电流注入而没有相邻导体的辅助,并激励对FGT和其他VDW磁铁的效果进行进一步研究。
大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。
In collaboration with He, Rong-Qiang (贺荣强) a gifted expert Zheng, Ru (郑茹) , Wang, Jia-Ming (王佳明), Chen, Yin (陈寅) , Tian, Yi-Heng ( 田一衡) at Renmin University of China; Huang, Li ( 黄理) a gifted expert at Science and Technology on Surface Physics and Chemistry Laboratory
耦合参数谐振器(参数器)网络有望成为并行计算架构。在实现复杂网络的过程中,我们报告了两个耦合参数器的实验和理论分析。与以前的研究不同,我们探讨了参数器之间强双线性耦合的情况,以及失谐的作用。我们表明,即使需要仔细校准以确保有正确的解空间,系统仍可在此状态下作为 Ising 机运行。除了形成分裂正常模式外,还会产生新的混合对称状态。此外,我们预测具有 N > 2 个参数器的系统将经历多个相变,然后才能达到与 Ising 问题等同的状态。
猜想(量子强宇宙审查)设 S 为(不一定是全局双曲)时空 ( M , g ab ) 的严格偏柯西曲面,设 D ( S ) 为其依赖域。( D ( S ) , ^ g ab )本身可以看作是一个全局双曲时空,其中 ^ g ab = ψ − 1 ∗ g ab ,ψ : D ( S ) → ψ ( D ( S )) ⊂ M 是等距嵌入。设 A 是定义在 ( M , g ab ) 上的 F 局部量子场论,设 B 是同构于 A ( M ; D ( S )) 的 ( D ( S ) , ^ g ab ) 上的量子场论。设 ω : B → C 是一般的纯 Hadamard 态。那么,一般来说,不存在将 ω 扩展至 Hadamard 状态 ω : A ( M ; D ( S )) → C 的情况。
在我们与本地和全球利益相关者的接触中,我们解释说,“全球 50 强”就像是一份未来的蓝图:通过不确定性,我们可以制定计划来探索我们的优势和劣势以及在未来 50 年可能出现的任何极端情况下可能遇到的机遇和威胁。通过假设,我们可以监控我们认为理所当然或假定为真实的关键事物,这一点很重要,因为否则未来机遇的整个基础可能会发生变化。我们还使用在十年左右有效的十大趋势来确定未来机遇的领域,所有这些都是为了积极影响未来的增长、繁荣和福祉,从而转化为未来的机遇。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,主要是因为对这些材料行为的了解不足,包括它在受到变幅载荷 (VAL) 时的完整性。因此,本研究旨在研究欠载对不同层压板取向的 FGRC 疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 结果相比,欠载效应使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
”战略更新的目的应该是制定一个有远见的具体计划,该计划通过实现CERN的下一个旗舰项目。该计划应吸引并重视国际合作,并应使欧洲能够继续在该领域发挥领导作用。”