摘要背景:阐明脑缺血再灌注损伤 (CIRI) 的发病机制和开发新的有效疗法至关重要。丁香脂素 (Syr) 是一种存在于各种药草中的呋喃木脂素,可能在治疗 CIRI 中发挥重要作用。本研究旨在研究 Syr 对 CIRI 进展的影响并揭示其中的潜在机制。方法:建立了一种大脑中动脉闭塞 (MCAO) 小鼠模型来研究 CIRI。给小鼠施用浓度为 20 mg/kg 和 40 mg/kg 的 Syr,持续 48 小时。使用 2,3,5-三苯基四唑氯化物 (TTC) 测定法评估 Syr 对小鼠脑梗死的影响。采用免疫染色法检测离子化钙结合衔接分子 1 (Iba1) 和胶质纤维酸性蛋白 (GFAP),采用酶联免疫吸附试验 (ELISA) 检测白细胞介素 (IL)-1 β、肿瘤坏死因子 (TNF)- α、IL-10 和 IL-6 的水平。此外,还进行了末端脱氧核苷酸转移酶 (TdT) 介导的 2′-脱氧尿苷 5′-三磷酸 (dUTP) 缺口末端标记 (TUNEL) 试验,以评估对大脑中动脉闭塞模型 (MCAO) 小鼠脑组织中脑胶质细胞活化、炎症和细胞凋亡的影响。进一步进行免疫印迹以验证其作用机制。结果:Syr 可减轻 MCAO 小鼠的脑梗死。此外,它还降低了这些模型中脑神经胶质细胞的激活。我们的研究结果进一步表明,Syr 可减少 MCAO 小鼠脑组织内的炎症。它还抑制这些组织中的细胞凋亡。从机制上讲,Syr 抑制核因子 κB (NF- κ B) 通路,从而缓解 CIRI。结论:总之,Syr 通过阻断神经胶质细胞激活和抑制炎症反应来缓解 CIRI。
阿姆斯特丹,2025年2月5日,07:00小时CET - N.V. Avantium N.V.是可再生和圆形聚合物材料的领导者,已与EPC Engineering&Technologies Gmbh签署了一家国际技术提供商以及工程和工厂建筑公司的合作。这种合作伙伴关系旨在推进连续的PEF聚酯生产技术,以每年及以后的100千摩尼尼斯的植物能力为目标。合作将结合两家公司的专业知识,以商业化PEF的连续聚合(“ PEF CPOL技术”)。Avantium和EPC将将其各自的技术和过程与Polymetrix Ag的固态聚合(SSP)一起整合。PEF CPOL技术将包含在Avantium的YXY®技术许可方案中。EPC将提供工程,工厂建设服务和关键设备,包括从Polymetrix到Avantium的未来被许可人的SSP设备。 Avantium开发了其专有的YXY®技术来生产FDCA(Furandicarboxylic Acid),这是完全基于植物的和圆形聚合物PEF(聚乙烯呋喃酸盐)的必不可少的成分。 pef由Avantium品牌为Releaf®。 Avantium目前正在荷兰Delfzijl创建世界上第一个商业FDCA工厂。 该FDCA旗舰工厂将在Avantium的商业化和许可策略中发挥至关重要的作用。 商业FDCA工厂允许Avantium将FDCA和Releaf®直接出售给Offtake Partners,同时还向全球工业合作伙伴提供全面的技术许可证。EPC将提供工程,工厂建设服务和关键设备,包括从Polymetrix到Avantium的未来被许可人的SSP设备。Avantium开发了其专有的YXY®技术来生产FDCA(Furandicarboxylic Acid),这是完全基于植物的和圆形聚合物PEF(聚乙烯呋喃酸盐)的必不可少的成分。pef由Avantium品牌为Releaf®。Avantium目前正在荷兰Delfzijl创建世界上第一个商业FDCA工厂。该FDCA旗舰工厂将在Avantium的商业化和许可策略中发挥至关重要的作用。商业FDCA工厂允许Avantium将FDCA和Releaf®直接出售给Offtake Partners,同时还向全球工业合作伙伴提供全面的技术许可证。在这种技术许可下,工业合作伙伴可以使用Avantium的专有YXY®技术在大规模生产设施中生产FDCA和PEF。Avantium和EPC工程和技术已经在2017年共同努力,当时EPC使用熔体状态聚合制定了每年25千座PEF连续聚合厂的概念设计。这种概念设计是联合开发协议的起点,即将聚合技术进一步扩展到每年及以后的100千摩孔。Polymetrix将伴随其连续的固态聚合知识贡献。通过这种合作,Avantium能够将其YXY®技术许可包扩展到完整的连续PEF生产过程,包括工业规模的绩效保证,无论是Greenfield,Brownfield还是Raturofit工厂。EPC Engineering&Technologies董事总经理Karol Kerrane评论:“ EPC不断努力寻找技术解决方案以克服全球环境挑战。通过与Avantium的国际合作,我们充满信心,通过为连续PEF生产提供世界上最好的实践,共同取得巨大的成功。” Avantium执照的董事Bart Langius补充说:“与EPC和Polymetrix的合作标志着我们的使命一步,是在聚酯行业添加我们可再生和循环的聚合物PEF。通过将我们的专业知识与EPC和Polymetrix相结合,我们相信我们可以为潜在的许可合作伙伴提供一个全面的许可方案,将Avantium的YXY®技术与连续的PEF聚合技术集成在一起,从而提供了基于化石的塑料的高性能替代方案。”
在结肠中肠上皮细胞的腔膜中表达了阴离子交换器蛋白SLC26A3(在腺瘤中下调),在那里它促进了Cl-和草酸盐的吸收。我们先前鉴定出从SLC26A3细胞质表面起作用的SLC26A3抑制剂的4,8-二甲基氨基菜蛋白类,并在小鼠的便秘模型和高氧化尿症模型中证明了它们的功效。在此,对主要筛选的50,000种新化合物和1740种活性化合物的化学类似物筛选产生了五种新型的SLC26A3选择性抑制剂(1,3-二氧二氨基氨基氨基酰胺; n- n-; n-(5-磺胺1,3,3,4- thiAdiAdiAdiAzol-2- yl-yl-yl-yl-yl-yl-yl-yl-yl-pir); 3-羧基-2-苯基苯并呋喃和苯唑嗪-4-一个),IC 50降至100 nm。动力学冲洗和作用研究发作揭示了噻唑洛 - 吡啶二肽-5-one和3-羧基-2-苯基苯甲酰苯甲氟烷抑制剂的细胞外作用部位。分子对接计算显示这些抑制剂的假定结合位点。在小鼠的洛陶化胺模型中,口服的7-(2-氯 - 苯甲基甲基)-3-苯基噻唑洛洛[3,2-A]吡啶蛋白-5-酮(3A)显着增加了粪便的体重,颗粒的数量和水含量。SLC26A3具有细胞外部作用部位的抑制剂提供了可能在口服后产生最小的全身性暴露的非吸收性,发光作用抑制剂的可能性。我们的发现还表明,可以鉴定出具有细胞外作用部位的相关SLC26阴离子转运蛋白的抑制剂,以用于对选定上皮离子运输过程的药理调节。
恰加斯病 (ChD) 也称为美洲锥虫病,是一种由血鞭毛原虫克氏锥虫引起的寄生虫病。该病是拉丁美洲的地方病,估计有 600 万至 700 万人感染。如今,由于通过旅行和迁徙传入的病例以及其地理分布不断扩大(例如美国的情况),ChD 被视为新出现的全球健康问题(Paniz Mondol 等人,2020 年)。尽管如此,ChD 的治疗选择仍然有限,并且表现出显著的不良反应。目前的治疗选择基于两种硝基衍生物和硝基呋喃化合物,苯并硝唑 (Bz) 和硝呋莫司 (Nx),它们在 50 多年前就已引入临床医学,尽管它们是仅有的两种获准用于治疗 ChD 的药物,但它们的使用存在一些局限性。首先,Bz 和 Nx 这两种药物都有明显的副作用,全身体征和症状从轻微到严重不等,包括皮疹、恶心、呕吐、厌食、贫血、白细胞减少和周围神经病变,这些通常会导致停止治疗。其次,这些药物的疗效取决于寄生虫的发育阶段、疾病阶段(急性或慢性)和患者的地理位置,治愈率为 60% 到 80%。这一点很重要,因为地理位置与寄生虫及其各自的离散类型单位(DTU)的基因组变异性密切相关,已知这些单位对治疗的反应趋势不同(Higuera 等人,2013 年)。第三,治疗时间延长,从 60 天到 120 天不等,由于潜在的副作用,需要密切监测。最后,克氏锥虫耐药菌株的出现已成为成功治疗 ChD 的主要障碍。因此,迫切需要确定新药和药物靶点,以提高 ChD 治疗的有效性和安全性。因此,人们正在努力寻找针对这种顽固感染的新型化疗方法,特别是在慢性期,这是该疾病最隐蔽和最常见的临床表现。因此,在治疗 ChD 方面取得突破性进展
目标和意义:本项目的目标是合成和表征新型改性硼化镁 MgB2 材料,该材料具有改进的氢循环动力学和储氢能力,并证明其能够满足美国能源部 (DOE) 的储氢目标。如果成功,固态改性 MgB2 材料将比市场上的高压压缩 H2 (700 bar) 或液态 H2 替代车载储氢系统更安全、更便宜。背景:硼氢化镁 Mg(BH4)2 是少数几种已证实重量储氢容量大于 11 wt% 的材料之一,因此已证实可用于满足 DOE 储氢目标的储氢系统。然而由于动力学极其缓慢,Mg(BH 4 ) 2 和 MgB 2 之间的循环只能在高温(~400°C)和高充电压力(~900 bar)下完成。最近,四氢呋喃 (THF) 与 Mg(BH 4 ) 2 复合已证明可以大大改善脱氢动力学,能够在 <200°C 下快速释放 H 2 以高选择性生成 Mg(B 10 H 10 )。然而,这些类型的材料的氢循环容量要低得多。该项目专注于开发改性 MgB 2,方法是将镁硼醚脱氢扩展到 MgB 2 或在添加剂存在下直接合成改性 MgB 2。该项目旨在改善镁硼化物/镁硼氢化物系统的氢循环动力学和循环容量,以帮助实现 DOE 氢存储的最终目标。该项目旨在 1) 合成和表征新型改性镁硼化物,尤其是醚改性材料,与未改性的 MgB 2 相比,其氢循环动力学和氢存储容量有所改善;2) 确定新型改性硼化物的可逆氢化是否显示出显著改善的氢循环动力学和循环容量,达到实际可行的水平。这个由 HNEI 领导的项目是 UH(HNEI 和化学系)和 DOE-Hydrogen Materials 的合作成果
简介:泌尿道感染在小儿时期很常见。了解病因和局部耐药模式对于确定经验治疗至关重要。我们着手审查与泌尿道感染有关的病原体、局部耐药模式以及相应调整一线抗生素治疗的影响。方法:我们进行了一项横断面研究,其中包括 2019 年(第 1 组)和 2022 年(第 2 组)两个时期在北巴拉那州一家医院接受尿培养的儿科患者。在这两个时期之间,建立了内部临床行动方案,根据当地流行病学情况,建议使用头孢呋辛作为一线经验性抗生素治疗。对各组所鉴定的泌尿道病原体、各自的抗菌素耐药模式以及制定的经验性抗生素治疗进行了比较。结果: 第 1 组共确诊泌尿道感染 402 例,第 2 组共确诊 398 例。大肠杆菌 (E. coli) 是最常见的泌尿道病原菌 (79.4% - 83.3%),其次是奇异变形杆菌和克雷伯菌属。在第 1 组中,最常选择的经验性抗菌药物是阿莫西林-克拉维酸盐 (AC),而在第 2 组中则是头孢呋辛 (p < 0.001)。最常见的耐药性是氨苄西林(39.3% - 39.7%)。对 AC 的耐药性在各组之间没有表现出统计学上的显著变化(33.1% vs 27.4%,p = 0.079),对头孢呋辛(4.7% vs 3.3%,p = 0.292)和甲氧苄啶-磺胺甲恶唑 (TMP-SMX) 的耐药性(15.2% vs 14.1%,p = 0.659)也是如此。第 1 组和第 2 组之间对呋喃妥因 (9.0% vs 0.3%,p < 0.001) 和磷霉素 (1.7% vs 0.3%,p < 0.036) 的耐药性显著降低。结论:大肠杆菌仍然是儿科泌尿道感染的主要病原体。我们的样品的交流电阻很高(33.1%)。将一线经验性抗生素治疗从 AC 改为头孢呋辛,导致 AC 耐药性降低的趋势,而不会增加头孢呋辛耐药性。关键词:儿童;泌尿道感染/病因;泌尿道感染/微生物学;泌尿道感染/药物治疗;细菌耐药性
1. Galac MR, Lazzaro BP. 普罗维登斯菌属细菌与天然宿主果蝇的比较病理学。Microbes Infect 2011;13:673–83。2. Johnson AO, Forsyth V, Smith SN, Learman BS, Brauer AL, White AN 等。斯图尔特普罗维登斯菌转座子插入位点测序:导管相关尿路感染的必需基因和适应性因素。mSphere 2020;5:e00412–20 3. O'Hara CM, Brenner FW, Miller JM。变形杆菌、普罗维登斯菌和摩根菌的分类、鉴定和临床意义。临床微生物学评论 2000;13(4):534–46。 4. Rajni E、Jain A、Garg VK、Sharna R、Vohra R、Jain SS。普罗维登斯菌导致泌尿道感染:我们是否走进了死胡同?IJCCM 2022;26(4):446-51。5. Frieri M、Kumar K、Boutin A。抗生素耐药性。J Infect Public Health 2017;10:369-78。6. Huttner A、Kowalczyk A、Turjeman A、Babich T、Brossier C、Elia-kim-Raz N 等。5 天呋喃妥因与单剂量磷霉素对女性无并发症下尿路感染临床缓解的影响:一项随机临床试验。JAMA 2018;319:1781-9。 7. 卢文,钟胜,马翔,徐宁,林德,张克,等。 Fos A11,一种在普罗维登西亚雷特格里 (Providencia Rettgeri) 中发现的新型染色体编码的磷霉素抗性基因。微生物光谱 2023;12(2):e02542–23。 8. Falagas ME、Kastoris AC、Kapaskelis AM、Karageorgopoulos DE。磷霉素用于治疗多重耐药性,包括产生广谱β-内酰胺酶的肠杆菌科感染:系统评价。柳叶刀传染病 2010;10:43–50。 9. Fu KP、Lafredo SC、Foleno B、Isaacson DM、Barrett JF、Tobia AJ 等人。左氧氟沙星(L-氧氟沙星)的体外和体内抗菌活性,左氧氟沙星是一种光学活性的氧氟沙星。抗菌剂化学治疗 1992;36:860-6。
(1) Seuferling, T.;Larson, T.;Barforoush, J.;Leonard, KC 用于高电流密度下电化学分解水的碳酸盐衍生多金属催化剂。ACS Sustainable Chem. Eng. 2021 ,9 ,16678 − 16686。 (2) Stalcup, MA;Nilles, CK;Lee, H.-J.;Subramaniam, B.;Blakemore, JD;Leonard, KC 在 CO 2 膨胀电解质中进行有机电合成:实现选择性苯乙酮羧化生成阿卓酸。ACS Sustainable Chem. Eng. 2021 ,9 ,10431 − 10436。 (3) Farris, BR;Niang-Trost, T.;Branicky, MS; Leonard,KC 使用人工策划的数据集评估电化学 CO 2 还原的机器学习模型。ACS 可持续化学工程。2022,10,10934 − 10944。 (4) Park,S.-H.;Yang,C.;Ayaril,N.;Szekely,G. 来自生物质衍生构建块的耐溶剂薄膜复合膜:壳聚糖和 2,5-呋喃二甲醛。ACS 可持续化学工程。2022,10,998 − 1007。 (5) Voros,V.;Drioli,E.;Fonte,C.;Szekely,G. 通过连续和同时分离抗氧化剂进行工艺强化:一种橄榄叶废料的升级回收方法。ACS 可持续化学工程。 2019, 7, 18444 – 18452。 (6) Didaskalou, C.;库派,J.;切里,L.;巴拉巴斯,J.;瓦斯,E.;霍尔茨尔,T.; Szekely, G. 用于集成合成-分离平台的膜接枝不对称有机催化剂。 ACS目录。 2018, 8, 7430 – 7438. (7) 李杰;特雷奇科,M.;尹,J.;朱,Y。李,G。宋,S。杨,H。李,J。吴,J。卢,J。 Wang, X. 分子成像中的机器视觉自动手性分子检测和分类。 J. Am.化学。苏克。 2021 ,143 ,10177 − 10188。 (8) Zheng, Y.;Wang, X.;Wu, Z. 间歇结晶过程的机器学习建模和预测控制。Ind. Eng. Chem. Res. 2022 ,61 ,5578 − 5592。 (9) Zhu, X.;Ho, C.-H.;Wang, X. 生命周期评估和机器学习在绿色化学替代品高通量筛选中的应用。ACS Sustainable Chem. Eng. 2020 ,8 ,11141 − 11151。
4 cfu/g,最低为 1.9 x 10 -4 cfu/g,而平均值为 4.09 x 10 4。使用标准微生物程序对分离物进行鉴定和表征。最常见的细菌是金黄色葡萄球菌(26%),霍乱弧菌(22%),志贺氏菌(13%),而最少的是沙门氏菌(9%)。革兰氏阳性菌(金黄色葡萄球菌)对环丙沙星(100%)和氧氟沙星(100%)高度敏感,但对氨苄西林(100%)高度耐药。革兰氏阴性病原体(大肠杆菌、霍乱弧菌和志贺氏菌)对培氧氟沙星(100%)和氧氟沙星(100%)高度敏感。它还显示出对阿莫西林(100%)、氯霉素(100%)、庆大霉素(100%)、呋喃妥因(100%)的高耐药性。本研究中抗生素耐药菌的高流行率是一个严重问题,因为大肠杆菌、金黄色葡萄球菌、沙门氏菌、霍乱弧菌和志贺氏菌的耐药模式会对人类健康产生影响,从而建议鱼类加工商和销售商应改善处理卫生状况,消费者也应妥善处理鱼类,以尽量减少可能的健康危害。DOI:https://dx.doi.org/10.4314/jasem.v28i12.26 许可证:CC-BY-4.0 开放获取政策:JASEM 发布的所有文章均为开放获取文章,任何人都可以免费下载、复制、重新分发、转发、翻译和阅读。版权政策:© 2024。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:NWUZO,AC;IGWE,PC;OKPOKWU,UA;ANIOKETE,UC;NOMEH,OL;NWOJIJI,EC;CHUKWUEMEKA–ODI,LO;UGWU,J;NWADUM,EF;AGBOM,JN;NWOKPORO,NR(2024)。对尼日利亚埃邦伊州阿巴卡利基水产养殖鱼细菌污染及其公共卫生影响的评估。应用科学环境管理杂志 28 (12) 4153-4160 日期:收到日期:2024 年 9 月 18 日;修订日期:2024 年 10 月 20 日;接受日期:2024 年 11 月 5 日;出版日期:2024 年 11 月 15 日 关键词=抗生素耐药性;公共卫生影响;水产养殖;细菌学;人类 在过去的 35 年里,尼日利亚的水产养殖产量每年增长 12%,从 1980 年的 6,000 吨增加到 2016 年的约 307,000 吨(Worldfish,2018 年)。尼日利亚是最大的鱼类养殖国
高 I/O 密度和绿色材料是倒装芯片和 3D IC 封装用封装基板的两大主要驱动力。未来的有机层压基板将需要 5-25 µ m 的线宽和间距以及 50-100 µ m 的封装通孔 (TPV) 间距。这种超细间距要求将因电化学迁移和导电阳极丝 (CAF) 而导致严重的基板故障。因此,有必要开发新型无卤材料并研究其在超细间距应用中的可靠性。这项工作主要集中在四个领域:1) 先进的无卤材料,2) 细线宽和间距中的表面绝缘电阻 (SIR),3) 细间距 TPV 中的导电阳极丝 (CAF),以及 4) 倒装芯片互连可靠性。本研究选择的基板材料包括在聚合物主链上加入无卤阻燃剂的树脂配方。在具有 50 µm 间距铜线的基板上研究了 SIR,并在具有 150 µm 和 400 µm 间距 TPV 的基板上研究了 CAF。在这两项测试中,都观察到无卤基板与溴化 FR-4 相比表现出更好的电化学迁移阻力。通过对测试基板进行热循环测试 (TCT)、无偏高加速应力测试 (U-HAST) 和高温存储 (HTS) 测试来研究倒装芯片可靠性。在每次可靠性测试后都进行扫描声学显微镜 (C-SAM) 分析和电阻测量。测试基板分别通过了 200 小时的 HTS、96 小时的 HAST 和 2000 次 TCT 循环。倒装芯片可靠性结果表明,这些材料有可能取代传统的卤化基板用于高密度封装应用。关键词:无卤素基板、表面绝缘电阻、导电阳极丝、倒装芯片可靠性 简介 电子产品向无卤素材料的转变始于 1994 年德国通过的《二恶英法》。从那时起,欧盟 (EU) 制定的生态标签成为印刷线路板采用无卤素材料的驱动力。卤素通常添加到 PWB 中使用的聚合物玻璃复合材料中以达到阻燃效果。然而,卤素材料在特定的燃烧条件下会形成多溴二苯并二恶英 (PBDD) 和多溴二苯并呋喃 (PBDF),这会对环境和健康造成严重风险。在这方面,无卤材料比卤素材料优越得多,并且在回收过程中也很有用 [1]。印刷电路板研究所
