简介:泌尿道感染在小儿时期很常见。了解病因和局部耐药模式对于确定经验治疗至关重要。我们着手审查与泌尿道感染有关的病原体、局部耐药模式以及相应调整一线抗生素治疗的影响。方法:我们进行了一项横断面研究,其中包括 2019 年(第 1 组)和 2022 年(第 2 组)两个时期在北巴拉那州一家医院接受尿培养的儿科患者。在这两个时期之间,建立了内部临床行动方案,根据当地流行病学情况,建议使用头孢呋辛作为一线经验性抗生素治疗。对各组所鉴定的泌尿道病原体、各自的抗菌素耐药模式以及制定的经验性抗生素治疗进行了比较。结果: 第 1 组共确诊泌尿道感染 402 例,第 2 组共确诊 398 例。大肠杆菌 (E. coli) 是最常见的泌尿道病原菌 (79.4% - 83.3%),其次是奇异变形杆菌和克雷伯菌属。在第 1 组中,最常选择的经验性抗菌药物是阿莫西林-克拉维酸盐 (AC),而在第 2 组中则是头孢呋辛 (p < 0.001)。最常见的耐药性是氨苄西林(39.3% - 39.7%)。对 AC 的耐药性在各组之间没有表现出统计学上的显著变化(33.1% vs 27.4%,p = 0.079),对头孢呋辛(4.7% vs 3.3%,p = 0.292)和甲氧苄啶-磺胺甲恶唑 (TMP-SMX) 的耐药性(15.2% vs 14.1%,p = 0.659)也是如此。第 1 组和第 2 组之间对呋喃妥因 (9.0% vs 0.3%,p < 0.001) 和磷霉素 (1.7% vs 0.3%,p < 0.036) 的耐药性显著降低。结论:大肠杆菌仍然是儿科泌尿道感染的主要病原体。我们的样品的交流电阻很高(33.1%)。将一线经验性抗生素治疗从 AC 改为头孢呋辛,导致 AC 耐药性降低的趋势,而不会增加头孢呋辛耐药性。关键词:儿童;泌尿道感染/病因;泌尿道感染/微生物学;泌尿道感染/药物治疗;细菌耐药性
• 血液稀释剂:包括 Coumadin(华法林)、Plavix(氯吡凝胶)、Ticlid(盐酸噻氯匹定)、Brilinta(替格瑞洛)、Aggrastat(替罗非班)、Agrylin(阿那格雷)、Xarelto(利伐沙班)、Pradaxa(达比加群)、Eliquis(阿哌沙班)、Lovenox(低分子量肝素)、Innohep(肝素)或 Effient(普拉格雷),您必须遵循我们的护士提供的指示。• 糖尿病/减肥药物:请参阅以下指示。• 血管紧张素转换酶 (ACE) 抑制剂降压药:请勿在手术当天服用以“pril”结尾的药物。例如:赖诺普利、贝那普利、雷米普利、卡托普利、依那普利、喹那普利• ARB 降压药:请勿在手术当天服用以“沙坦”结尾的药物。例如:氯沙坦、厄贝沙坦、坎地沙坦、缬沙坦、替米沙坦、奥美沙坦 • 利尿剂:检查当天请勿服用“水”丸。例如:呋塞米 (Lasix)、布美他尼 (Bumex)、托拉塞米、氢氯噻嗪 (HCTZ)、螺内酯 (Aldactone)、吲达帕胺、氯噻嗪、氯噻酮、美托拉宗 • 所有其他药物:包括阿司匹林,应在检查当天用一小口水服用。减肥/糖尿病药物:
使用纳米悬浮液可以提高砖粉药物和亲脂性物质的溶解度。它们的特征是无载体、纳米尺寸、100% 药物颗粒,粒径小于 1 纳米,用最少量的合适表面活性剂、聚合物或它们的组合制造而成。(7)与其他纳米悬浮液制造程序相比,湿介质研磨是一种更好的选择,因为它易于操作、价格低廉、高度可重复、高效、不含有机溶剂,并且易于扩大规模。(8)此外,在生产纳米悬浮液时,实现这些优势是当务之急。(9)另一方面,关键问题是研磨珠腐蚀可能带来污染。此外,由于研磨介质负载过重导致研磨设备重量过大,控制批量大小可能会变得复杂,而研磨时间延长也可能导致其他问题。 (10)对于湿式研磨,最重要的工艺变量是温度、研磨时间、研磨速度、介质体积和研磨尺寸。稳定剂类型、粘度、浓度和药物浓度是影响最终产品质量的典型配方特征。(11)工艺优化变得越来越重要,因为药物配方的开发通常侧重于生产出最好的最终药物,同时使用更少的能源并提高生产能力。(12)
出于本野外指南的目的,我们将“扩展的耐药性”定义为结核分枝杆菌的菌株,对利福平抗性,至少另一种以下药物:bedaquiline,bedaquiline,linezolid,clofazimine,delamanid和/或pitimanid。此定义包括XDR-TB,即具有对利福平,氟喹诺酮类和至少一个或多个A组的TB。然而,它还包含其他抗性模式,例如,TB具有对利福平和贝达奎林的抗性以及对氟喹诺酮类的敏感性。世界卫生组织(WHO)将结核分枝杆菌的菌株抗抗利福平和氟喹诺酮抗性和氟喹诺酮的抗性被定义为“耐药前耐药(前XDR)”结核病(WHO),如果在本指南中也将在本指南中考虑对上述药物的其他耐药性。但是,由于WHO提供了有关XDR-TB的管理指南,因此我们不会在本指南中关注这些菌株。
Vryalar 阿立哌唑、阿立哌唑 ODT、奥氮平、奥氮平 ODT、喹硫平、喹硫平 ER、利培酮、利培酮 ODT 或齐拉西酮
引言胸动脉瘤(TAA)是一种多因素心血管疾病,其主动脉夹层(AD)或破裂的风险很大。已知某些因素会影响TAA的发展,包括衰老,性别,结缔组织障碍,动脉粥样硬化,吸烟,高血压和家族史(1,2)。氟喹诺酮是最常见的抗生素类别之一,由于其广谱覆盖范围,出色的口服生物利用度,广泛的组织渗透以及历史上很少的不良影响(3,4)。最近,研究人员发现,氟喹诺酮的使用构成增加主动脉瘤(AA)/AD的风险。此外,AA/AD患者的氟喹诺酮暴露不良的风险很高(5-13)。先前的研究引起了人们对在高风险人群中使用氟喹诺酮类药物的关注。然而,很难通过进行临床试验来研究TAA患者氟喹诺酮类药物的潜在机制,这在药物暴露下可能有害和致命。因此,在最近的研究中已使用TAA动物模型,包括Marfan综合征相关和零星的TAA模型,以研究氟喹诺酮暴露(12,13)。然而,动物模型中的药物反应无法反映人类的实际机制,因为物种差异很大。此外,当前使用的TAA动物模型仅代表了TAA的部分类型。例如,在环丙沙星的博览中尚未探索双质主动脉瓣相关(与BAV相关)TAA的TAA,因为很难用有效的BAV相关TAA渗透率构建动物模型(14)。
通过NAMPT和NRK1与吡咯烷酚喹酮(PQQ)调节NAD+合成的方法:对老化的潜在影响通过NAMPT和NRK1与吡咯烷酚喹酮(PQQ)调节NAD+合成的方法:对老化的潜在影响
摘要:本研究合成并表征了两种肼基喹喔啉衍生物,即(2E,3E)-2,3-二肼基-6,7-二甲基-1,2,3,4-四氢喹喔啉(QN-CH 3 )和(2E,3E)-6-氯-2,3-二肼基-1,2,3,4-四氢喹喔啉(QN-Cl)。采用电化学测试、表面分析技术(如扫描电子显微镜(SEM))以及密度泛函理论(DFT)和分子动力学(MD)模拟等各种方法测试了这些衍生物在 363 K 的 1.0 M 盐酸溶液中作为低碳钢的抑制剂的有效性。从电流-电位(IE)曲线可以看出,QN-CH 3 和 QN-Cl 均充当阴极型抑制剂,其抑制效率随浓度的增加而增加。在 10-3 M 浓度下,缓蚀效率达到最大值:QN-CH 3 为 89.07%,QN-Cl 为 87.64%。电化学阻抗谱 (EIS) 测试表明腐蚀过程由电荷转移控制。QN-CH 3 比 QN-Cl 具有更优异的性能,这归因于其分子结构的性质。此外,SEM 分析证实,肼基喹喔啉衍生物按照 Langmuir 等温线粘附在低碳钢表面,并在高温下保持其防腐性能。DFT 计算和 MD 模拟进一步深入了解了腐蚀抑制机理。关键词:肼基喹喔啉衍生物;低碳钢腐蚀抑制;电化学测量;SEM 分析;理论研究。