致谢本信息由以下人员审核:Fiona Day 医生,高级专科肿瘤医师,Calvary Mater Newcastle,新南威尔士州;James Chirgwin,高级理疗师 – 肿瘤科、血液科和姑息治疗,Wesley 医院,昆士兰州;Kim Kerin-Ayres,执业护士癌症幸存者,悉尼癌症幸存者中心,Concord 医院,新南威尔士州;Melanie Moore,首席运动生理学临床主管,堪培拉大学 UC 癌症健康诊所,昆士兰州;Olivia Palac,代理助理主任,职业疗法,黄金海岸大学医院,昆士兰州;Danielle Rippin,消费者;Jane Wheatley 医生,临床和健康心理学家,圣文森特健康网络,悉尼,新南威尔士州。我们还要感谢参与本信息先前版本的编辑的医疗专业人士和消费者。
化疗引起的周围神经病变 (CIPN) [1] 是某些神经毒性抗癌药物(如铂类化合物、紫杉烷、长春花生物碱和硼替佐米 [2])的常见且令人衰弱的副作用。CIPN 可导致手脚疼痛、麻木、刺痛和功能丧失,影响癌症患者的生活质量和生存率 [3]。2023 年,美国报告了约 200 万例新发癌症病例,据报道约 58% 的患者需要某种形式的化疗 [4,5]。其中,铂类和紫杉烷类药物等神经毒性化疗药物最常用,据估计 50% - 70% 的癌症患者接受铂类疗法作为其治疗方案的一部分 [6]。在 2014 年的一项研究中,研究人员对 30 项临床研究中接受过各种神经毒性化疗的 4,179 名癌症患者进行了研究,研究结果显示这些患者的 CIPN 总患病率为 48% [7]。患病率因治疗后的时间范围而异,约 68% 的患者在治疗后 1 个月出现 CIPN,60% 在 3 个月后出现 CIPN,30% 在 6 个月后出现 CIPN [7]。然而,CIPN 患病率因化疗类型而异,奥沙利铂的 CIPN 发生率最高,约为 71%,紫杉醇在治疗后 6 个月的患病率为 63% [8]。另一篇综述描述了铂类药物依赖性 CIPN 患病率为 70% - 100%,紫杉烷类药物为 11% - 87%,
患者和方法:在2017年11月至2018年5月之间,手中包括26例外周神经损伤的患者。将患者随机分配到镜像组(n = 14)和对照组(n = 12)组。两组在我们的诊所接受常规疗法,在工作日连续六个星期,每天45分钟。镜子组又接受了10-15分钟的视觉镜疗法。视觉模拟量表(VAS),Duruöz手指数,手臂,肩膀和手的快速残疾,Jebsen手部功能测试和Semmes-Weinstein单丝测试用于评估基线时和治疗后患者的疼痛,手部功能和感觉。用测功机测量患者的手束强度。
收到日期:2023-03-11 / 修订日期:2023-03-30 / 接受日期:2023-04-30 通讯作者:Sudhanshu Shekhar Jha 博士 利益冲突:无 摘要背景:在印度,糖尿病相关的微血管和大血管后果负担巨大。随着糖尿病 (DM) 患病率的上升,患上糖尿病问题的人也越来越多。在印度,糖尿病周围神经病变 (DPN) 的患病率为 18.8% 至 61.9%,是糖尿病患者中最常见的并发症。早期发现 DPN 可以减轻其影响。初级保健筛查服务有助于早期发现问题并改善糖尿病患者的健康状况。本研究的目的是评估糖尿病诊所就诊的 2 型糖尿病患者的 DPN 风险因素及其患病率。方法:2021 年 9 月至 2022 年 8 月期间,对普尔尼亚政府医学院和医院的 300 名 2 型糖尿病患者进行了横断面研究。使用标准化问卷收集数据,然后对足部进行彻底的视觉和身体检查。获取尿液以检查白蛋白的存在,同时提供血液样本以确定 HbA1c。结果:300 名患者中有 170 人 (44%) 患有神经病变,其中 85 人 (51%) 有症状。较高的 HbA1c 水平(OR = 2.86;p < 0.017)、小学教育和教育水平较低(OR = 3.33;p < 0.002)、糖尿病持续时间(OR = 1.72;p < 0.037)、尿白蛋白的存在(OR = 2.56;p < 0.032)和外周血管疾病(OR = 2.84;p < 0.002)是 DPN 的预测因素。结论:根据目前的研究,农村地区周围神经病变的发病率很高。频繁筛查有助于早期发现 DPN,并有助于预防足部溃疡等并发症,最终导致截肢。关键词:糖尿病性周围神经病变、2 型糖尿病、足部检查。HbA1c、单丝。这是一篇开放存取文章,其使用的资助模式不向读者或其机构收取访问费用,并根据知识共享署名许可(http://creativecommons.org/licenses/by/4.0)和布达佩斯开放存取倡议(http://www.budapestopenaccessinitiative.org/read)的条款进行分发,允许在任何媒体中不受限制地使用、分发和复制,只要对原创作品进行适当的署名。
我们先前证明了ICOS途径的废除阻止了非肥胖糖尿病(NOD)小鼠中1型糖尿病的发育,但导致老年小鼠的CD4 + T细胞依赖性自身免疫性神经病。胰岛胰岛在ICOSL - / - NOD小鼠中的神经肌肉浸润中浸润,共同是,它们在CD4 + Tigit + T细胞中表现出很强的富集,而Tigit在Tigit的表达中限制为外围CD4 + T-cells中的CD4 + T-Cell限制为CD4 + FOX + FOX + FOX + T-Cell群体。
免责声明 本路径代表基于证据的最佳实践,但并不超越医疗保健专业人员的个人责任,即根据患者的具体临床情况,在咨询患者/替代决策者的情况下,使用自己的临床判断为患者做出适当的决定。本路径不能替代合格医疗保健专业人员的临床判断或建议。希望所有用户在遇到超出其特定知识、受监管实践范围或专业能力的任何问题时,都向其他具有适当资格和受监管的医疗保健提供者寻求建议。
上limb神经假体的最终目标是实现对单个纤维的灵巧和直观的控制。以前的文献表明,深度学习(DL)是从神经系统不同部分获得的神经信号中解码电动机的有效工具。但是,它仍然需要复杂的深层神经网络,这些神经网络是有效的,并且无法实时工作。在这里,我们研究了不同的方法,以提高基于DL的运动解码范式的效率。首先,应用了特征提取技术的全面集合来降低输入数据维度。接下来,我们研究了两种不同的DL模型策略:当可用大输入数据可用时,一步(1s)方法,当输入数据受到限制时两步(2s)。使用1S方法,一个单个回归阶段预测了所有纤维的轨迹。使用2S方法,一个分类阶段可以识别运动中的纤维,然后进行回归阶段,该回归阶段可以预测那些主动数字的轨迹。添加特征提取大大降低了电动机解码器的复杂性,使其可用于转换为实时范式。使用复发性神经网络(RNN)的1S方法通常比所有具有平均平方误差(MSE)范围的ML算法(MSE)范围在所有字符的范围为10-3到10-4的ML算法更好,而(VAF)分数(VAF)得分的范围为0.8,自由度(DOF)高于0.8(DOF)。此结果是DL比处理大数据集的经典ML方法更有优势。但是,当对较小的输入数据集进行训练如2S方法中时,ML技术可以实现更简单的实现,同时确保对DL的实现结果相似。在分类步骤中,机器学习(ML)或DL模型的准确性和F1得分为0.99。由于分类步骤,在回归步骤中,两种类型的模型都会使MSE和VAF分数与1S方法的分数相当。我们的研究概述了用于实施实时,低延迟和高精度DL基于DL的电机解码器的贸易交易。
大间隙(大于三厘米)周围神经损伤通常伴随受伤军人的广泛多重创伤。由于广泛的创伤和/或截肢,这些患者可能无法接受标准的微外科手术植入自体移植。因此,确实需要替代程序来改善受伤军人的功能恢复。自体移植的替代品,包括来自尸体组织的加工同种异体移植,通常不适用于大于三厘米的神经间隙。缝合连接可通过针伤、异物反应、炎症、疤痕和感染抑制神经再生。麻省总医院(马萨诸塞州波士顿)和沃尔特里德国家军事医疗中心(马里兰州贝塞斯达)的研究人员开发了一种无缝线方法,其中光能将含有光活性剂的生物相容性神经包裹物粘合在神经/移植物连接处。这种防水密封可防止轴突逃逸和对刺激神经再生很重要的生长因子泄漏,有助于形成最佳再生环境。
E10.37X9, E10.36, E10.39, E10.40, E10.41, E10.42, E10.43, E10.44, E10.49, E10.51, E10.52, E10.59, E10.610, E10.618, E10.620, E10.621, E10.622, E10.628, E10.630, E10.638, E10.641, E10.649, E10.65, E10.69, E10.8, E10.9, E10.A0, E10.A1, E10.A2, E11.00, E11.01, E11.10, E11.11, E11.21、E11.22、E11.29、E11.311、E11.319、E11.3211、E11.3212、E11.3213、E11.3219、E11.3291、E11.3292、E11.3293、E11.3299、 E11.3311、E11.3312、E11.3313、E11.3319、E11.3391、E11.3392、E11.3393、E11.3399、E11.3411、E11.3412、E11.3413、E11.3419、E11.3491、 E11.3492、E11.3493、 E11.3499、E11.3511、E11.3512、E11.3513、E11.3519、E11.3521、E11.3522、E11.3523、E11.3529、E11.3531、E11.3532、E11.3533、E11.3539、 E11.3541、E11.3542、E11.3543、E11.3549、E11.3551、E11.3552、E11.3553、E11.3559、E11.3591、E11.3592、E11.3593、E11.3599、E11.37X1、 E11.37X2, E11.37X3、E11.37X9、E11.36、E11.39、E11.40、E11.41、E11.42、E11.43、E11.44、E11.49、E11.51、E11.52、E11.59、E11.610、E11.618、 E11.620、E11.621、E11.622、E11.628、E11.630、E11.638、E11.641、E11.649、E11.65、E11.69、E11.8、E11.9、E13.00、E13.01、E13.10、E13.11、 E13.21、E13.22、 E13.29, E13.311, E13.319, E13.3211, E13.3212, E13.3213, E13.3219, E13.3291, E13.3292, E13.3293, E13.3299, E13.3311, E13.3312, E13.3313, E13.3319, E13.3391, E13.3392, E13.3393, E13.3399, E13.3411, E13.3412, E13.3413, E13.3419, E13.3491, E13.3492, E13.3493, E13.3499, E13.3511,E13.3512,E13.3513,E13.3519,E13.3521,E13.3522,E13.3523,E13.3529,E13.3531,E13.3532,E13.3533,E13.3539,E13.3541,E13.3542,E13.3543,E13.3549,E13.3551,E13.3552,E13.3553,E13.3559,E13.3591,E13.3592,E13.3593,E13.3599,E13.37X1,E13.37X2,E13.37X3, E13.37X9、E13.36、E13.39、E13.40、E13.41、E13.42、E13.43、E13.44、E13.49、E13.51、E13.52、E13.59、E13.610、E13.618、E13.620、E13.621、E13.622、E13.628、E13.630、E13.638、E13.641、E13.649、E13.65、E13.69、E13.8、E13.9 以及绩效期间 (CPT) 的患者就诊次数:11042、11043、11044、11055、11056、11057, 11719, 11720, 11721, 11730, 11740, 97161, 97162, 97163, 97164, 97597, 97802, 97803, 99202, 99203, 99204, 99205, 99212, 99213, 99214, 99215, 99304, 99305, 99306, 99307, 99308, 99309, 99310, 99341, 99342, 99344, 99345, 99347, 99348, 99349, 99350 不含远程医疗修饰符(包括但不限于):GQ、GT、POS 02、FQ、93、POS 10 且非分母排除:临床医生记录患者不符合下肢神经系统检查测量的资格,例如患者双侧截肢;患者的病情不允许他们准确响应神经系统检查(痴呆、阿尔茨海默氏症等);患者之前曾记录过糖尿病周围神经病变,并伴有保护性感觉丧失:G2178
本文提供了一个多功能的神经刺激平台,该平台具有完全可植入的多通道神经刺激剂,用于长期进行涉及周围神经的大型动物模型。该植入物在陶瓷外壳中密封并封装在医疗级有机硅橡胶中,然后在100℃的加速衰老条件下连续15天进行了主动测试。刺激器微电子技术以0.6 µm CMOS技术实现,并采用串扰降低方案,以最大程度地减少跨渠道干扰,以及用于无电池操作的高速功率和数据遥测。配备了蓝牙低能无线电链路的可穿戴发射器,定制的图形用户界面可实时,远程控制的刺激。三个平行刺激器在三个通道上提供了独立的刺激,在三个通道中,每个刺激器通过多重刺激部位支持六个刺激位点和两个返回位点,因此植入物可以在多达36个不同的电极对时促进刺激。提出了电子产品的设计,密封包装的方法和电性能以及盐水中用电极进行体外测试。