1霍普金斯海军陆战队,干细胞生物学和再生医学研究所,斯坦福大学,帕特里·格罗夫,CA 93950,美国2美国2干细胞生物学和再生医学研究所,斯坦福大学医学院,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国34305 Biologia, Universit à degli Studi di Padova, 35131 Padova, Italy 5 “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy 6 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy 7 San Camillo Hospital srl, IRCCS,30126委内兹,意大利委内西亚8 Chan Zuckerberg Biohub,旧金山,加利福尼亚州94158,美国9美国94158病理学系,斯坦福大学医学院,美国加利福尼亚州斯坦福大学,美国加利福尼亚州94305); lucia.manni@unipd.it(l.m.)
在这方面,近几年来,人们对基于镧系元素的单分子磁体 (SMM) 进行了深入研究,旨在在分子水平上稳定磁矩并开发更高密度的存储应用。[5,12–19] 镧系元素的缓慢弛豫时间、高磁矩和双稳态基态使其非常适合分子自旋电子学应用。[5,12,13] 镧系元素驱动的 SMM 方法的合理延伸是设计包含镧系元素的周期性网络,这些网络可以充当活性磁信息单元。在过去的几十年里,金属超分子协议已经成为一种设计嵌入金属元素的功能性网状材料的有力策略。[20–22] 这种合成范式也在表面上得到了发展,能够设计二维金属有机设计,主要采用过渡金属和碱金属。[23–25]
我们记录了新兴经济体的政策利率和短期市场利率之间的脱节。一方面,新兴经济体的央行遵循泰勒型规则,在经济活动减速时降低政策利率。另一方面,政策利率仅不完全传导至短期市场利率。我们假设这种脱节源于这些国家对波动的全球金融状况的依赖。在美国外生货币政策紧缩之后,新兴市场央行会降低政策利率以应对经济活动减速。然而,短期市场利率同时上升,对经济活动产生收缩力。我们表明,政策利率和短期市场利率之间的这种脱节可以通过一个模型来合理化,在该模型中,新兴经济体的银行在很大程度上依赖国际市场来融资。我们的研究结果揭示了新兴经济体货币政策的周期性和自主性问题。
为有效控制声场提供了新途径。[1–4] 除了实现负折射率、[5] 超透镜、[6,7] 全息图[8] 和声学斗篷之外,[9] 最近的进展还包括开发非互易系统、[10] 拓扑绝缘体、[11,12] 非线性、[13] 可调、[14] 编码[15] 和可编程超表面。[16] 声学超表面也被探索为模拟计算的潜在平台[17],计算机科学和人工智能的进步促进了设计程序,以实现超材料和超表面的理想特性。[18–21] 超材料也可用作探索量子概念类比的平台,如霍尔效应[22,23] 自旋特性、[24–27] skyrmions[28] 和旋转电子学。 [29] 声学超材料领域的一个发展中的分支致力于实现新型隔音系统。[30] 城市噪音污染日益严重是影响全球健康和生态环境的危险趋势之一。[31–35] 解决这个问题需要开发新的方法和材料,以实现宽带被动隔音。传统使用的系统通常以笨重的结构为代表,对建筑物和建筑物施加了严格的工程限制。[36] 噪音减轻的频率范围必须与所用材料的质量和体积相结合。此外,通风或光学透明度等一些关键特性通常与此类系统不相容。与传统的质量密度定律不同,超材料中声音的反射和衰减主要依赖于结构元素的周期性和形状,而不是它们的材料特性。超材料的一个重要选择是可以实现允许空气流动的结构。 [37–41] 各种设计包括穿孔膜、[42,43] 空间卷绕结构、[44–48] 和元笼 [49–51] 已被提出。尽管如此,尽管可实现的物理效应众多,声学超材料却很少在现实生活中得到应用。这些结构通常设计复杂,操作范围狭窄。在本文中,我们提出了一种隔音通风元室,允许光线进入内部区域。该室设计简单,便于制造和组装。同时,对材料的要求
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
队列效应,并量化了年龄,时间和出生队列因素对疾病率的影响。可估计的APC函数提供了一个有用的参数框架,可以补充标准的非参数描述方法。7尽管中国先前的研究已将APC模型应用于IHD分析,但8这些研究中使用的数据是从1987年到2013年,分析的同伙出生于1904年至1993年之间。尚未研究年轻一代的队列效应。这项研究分析并量化了中国IHD发病率和死亡率的世俗趋势的年龄,时期和队列对从全球疾病负担研究(GBD)2019中获得的数据。我们旨在确定中国预防IHD的影响,并确定高风险人口群体,应在政策决策中考虑到这一点。结果可能有助于改善长期的国家IHD预防政策和措施。
在这方面,在过去几年中,已经对基于灯笼的单分子杂志(SMM)进行了深入研究,目的是针对分子水平的杂志稳定和较高密度存储应用的稳定。[5,12–19]缓慢的松弛时间,高磁矩和灯笼的可靠地面状态使其非常适合分子自旋的应用。[5,12,13]灯笼驱动的SMM方法的逻辑扩展将是包含灯笼的定期网络的工程,该网络可以充当主动磁性信息单位。在过去的几十年中,金属分子方案已成为一种强大的策略,用于设计嵌入金属元件的功能性网状材料。[20–22]这种合成范式也已经在表面上开发,能够设计2D金属 - 有机设计,主要采用过渡和碱金属。[23–25]
周期驱动系统在科学和技术中无处不在。在量子动力学中,即使是少量的周期驱动自旋也会导致复杂的动力学。因此,了解此类动力学必须满足哪些约束是很有意义的。我们为每个周期数推导出一组约束。对于纯初始状态,受约束的可观测量是重复概率。我们使用约束来检测与未考虑的环境的不良耦合以及驱动参数的漂移。为了说明这些结果与现代量子系统的相关性,我们在捕获离子量子计算机和各种 IBM 量子计算机上通过实验展示了我们的发现。具体来说,我们提供了两个实验示例,其中这些约束超出了与已知单周期约束相关的基本界限。该方案可能用于检测无法通过经典方式模拟的量子电路中的环境影响。最后,我们表明,在实践中,测试 n 循环约束仅需执行 O(√n) 个循环,这使得评估与数百个循环相关的约束变得现实。
版权所有 © 2022 Rouse 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。