6 “采购创新周期表:替代权力:奖励竞赛”,联邦采购研究所,无日期,https://www.fai.gov/periodic-table;“欢迎来到挑战与奖励工具包!”,美国总务管理局,Challenge.Gov,无日期,https://www.challenge.gov/toolkit/;“寻找挑战”,美国总务管理局,Challenge.Gov,无日期,https://www.challenge.gov/#active-challenges。有关其他部门和机构的 AI 相关奖项挑战赛的示例,请参阅“应用 AI 挑战赛:大型语言模型 (LLM):通过使用 LLM 改善联邦政府服务”,美国总务管理局,Challenge.Gov,2023 年 6 月 30 日,https://www.challenge.gov/?challenge=appliedaichallengellms&tab=overview;“乘客筛查算法挑战赛:提高国土安全部威胁识别算法的准确性”,国土安全部,2017 年,https://www.kaggle.com/c/passenger-screening-algorithm-challenge/overview。
在这里,我们展示了一个现实世界的软件项目,以讨论三个抽象层次,以区分 AI 软件解决方案上不同粒度的信息交换。虽然最低级别的抽象过于复杂,无法创建标准化词汇表,但最高级别的抽象对于许多问题案例来说过于粗糙,无法设计合适的算法。尽管如此,正如我们将展示的那样,这个最高级别的抽象仍然很重要,因为它是军事操作员和 AI 专家之间信息交换的最佳级别。最高级别的抽象由平铺的 AI 方案表示,称为 AI 周期表 (PTA)。我们建议基于 PTA 的新型引导工作流程,以支持军事人员和 AI 专家之间的交流,以利用自动化工作的成果。我们将证明 PTA 非常适合作为军事操作员和 ML 专家之间的沟通手段。在未来的工作中,可以检查是否应特别针对安全部队的要求改进现有的 PTA。
人工智能(AI)的出现已使对各种应用的材料进行了全面的探索。但是,AI模型通常优先考虑科学文献中经常遇到的材料示例,从而根据固有的物理和化学属性限制了合适的候选者的选择。为了解决这种不平衡,我们生成了一个数据集,该数据集由OQMD,材料项目,JARVIS和AFLOW2数据库的1,453,493个自然语言材料叙事组成,这些叙述基于从头算的计算结果,这些结果在周期表中更均匀分布。基于三个标题:技术准确性,语言和结构以及内容的相关性和深度的人类专家和GPT-4对生成的文本叙述进行了评分,显示了相似的分数,但内容的深度是最滞后的。多模式数据源和大语言模型的集成具有巨大的AI框架潜力,以帮助探索和发现固态材料以进行特定的利益应用。
聚焦离子束 (FIB) 装置是一项关键技术,在纳米技术领域已得到广泛应用,可用于局部表面改性、掺杂、原型设计以及离子束分析。这种 FIB 系统的主要组成部分是离子源及其可用的离子种类 1 。目前,大多数仪器都采用 Ga 液态金属离子源 (Ga-LMIS),但对其他离子种类的需求仍在增加 2 。一种非常受关注的元素是硼,它是元素周期表中最轻的元素之一,在微电子学中已得到广泛应用,可通过注入或扩散在硅中进行 p 型掺杂 3 。人们长期以来一直对硼在 LMAIS 中的应用感兴趣,并为此付出了很多努力,通过 FIB 对材料进行局部改性,从而避免 B 宽束注入和光刻步骤。硼有两种稳定同位素,质量为 10 u(19.9% 天然
生物医学工程学院的本科课程的详细概述1 - 学期I PHY 123:波浪和振荡,光学和热物理学3个学分,3个小时/周的波浪和振荡:简单的谐波振荡器,总能量,总能量,总能量,平均和谐型系统的差异方程两个身体振荡,质量减少,振荡,强迫振荡,共振;渐进波,固定波,组和相速度的波浪,功率和强度。光学:图像缺陷:球形像差,散光,昏迷,失真,曲率,色差。光理论;光线的干扰:Young的双缝实验,边缘的位移及其用途,菲涅尔双晶池,干扰薄膜的干扰,牛顿的环,干涉仪;光的衍射:菲涅尔和弗劳恩霍夫衍射,单缝衍射,圆形光圈的衍射,光学仪器的分辨能力,双裂和N裂缝的衍射,衍射,衍射光栅;极化:极化光的生产和分析,Brewster定律,MALUS定律,双重折射,Nicol Prism,光活性,偏光仪。Chem 125:有机和无机化学3个学分,3小时的原子结构:光,光和其他形式的电磁辐射的粒子和波质性质,原子光谱,原子光谱,BOHR模型,量子数,原子轨道;周期表:元素周期表,原子半径,电离能,电子亲和力,电负性。氧化和还原反应的基本概念。热物理学:温度测量原理:铂电温度计,热电温度计,高温计; Kinetic theory of gases, Maxwell's distribution of molecular speeds, Mean free path, Equipartition of energy, Brownian motion, van der Waal's equation of state, First Law of Thermodynamics and its application, Reversible and irreversible processes, Second Law of thermodynamics, Carnot cycle, Efficiency of heat engines, Carnot's theorem, Entropy and disorder, Thermodynamic functions, Maxwell relations, Clausius- Clapeyron方程,吉布斯相规,热力学第三定律。化学键合:不同类型的键合,共价键的细节,价键理论(VBT),分子几何形状,价壳电子对抑制(VSEPR)理论,轨道,分子轨道理论(MOT)的杂交。
材料发现中的一个关键挑战是找到高温超导体。氢和氢化物材料长期以来一直被认为是有希望的材料,这些材料表现出传统的语音介导的超导性。但是,稳定这些材料所需的高压力限制了它们的应用。在这里,我们提出了高通量计算的结果,考虑到在环境压力下从周期表之间穿过二种高对称性三元氢化物。然后通过在直接估计超导临界温度之前考虑热力学,动态和磁性稳定性来减少这个较大的组成空间。这种方法揭示了一个可稳定的环境压力氢化物超导体Mg 2 IRH 6,预测的临界温度为160 K,可与最高温度超导底漆相当。我们通过与结构相关的绝缘子Mg 2 IRH 7提出了一条合成途径,该途径在15 GPA以上是热力学稳定的,并讨论这样做的潜在挑战。
周期性表电子构型和周期表,周期性,原子半径的群体趋势。电离能,电离,电离电位,电子亲和力,氧化电位,电极电位的趋势。磁性特性,para和diamagnetisms。S和P块中的化学键合有效原子数和屏蔽常数化学键的类型。离子键,共价键。杂交及其应用的概念。化学键合的理论。价键理论和分子轨道理论。晶格能量和离子化合物的Haber周期,相关数值。水溶液酸基碱反应,强弱酸和碱,净离子方程的化学反应,用于酸碱相互作用。降水反应,k SP值。氧化还原反应,平衡氧化还原方程。卤素反应,羟基及其性质间外化合物的一般特性。零组元素的零组一般特性,Zenon氦化合物的制备性能。
锂元素吸引了对能量储能的吸引力。锂是一种光元素,在元素周期表中的氢和氦气之后表现出低原子数3。锂原子具有释放一个电子并构成正电荷的强烈趋势,如li +。最初,锂金属被用作负电极,该电极释放了电子。然而,观察到其结构在重复电荷 - 分离循环重复后发生了变化。为了解决此问题,阴极主要由层金属氧化物和橄榄组成,例如氧化钴,Lifepo 4等,以及锂的某些内容物,而阳极由石墨和硅隔开。此外,在适当的溶剂中使用锂盐制备电解质,以获得更大的锂离子。由于锂离子的角色,电池的名称被用作锂离子电池。在此,提出的工作描述了锂离子电池的工作和操作机理。此外,锂离子电池的一般观点和未来的前景也得到了评估。关键字
摘要。在本文中,我们使用伪算法程序来评估人工智能生成的文本。我们应用自然论证综合评估程序 (CAPNA) 来评估人工智能文本生成器 GPT-3 在《卫报》撰写的一篇评论文章中产生的论点。CAPNA 从三个方面检查论证实例:其过程、推理和表达。使用论证类型识别程序 (ATIP) 进行初步分析,首先确定存在论证,其次根据论证周期表 (PTA) 的论证分类框架确定其具体类型。然后使用程序问题来测试论证在三个方面中的可接受性。分析表明,虽然人工智能文本生成器提出的论证在类型上各不相同,并且遵循人类推理的熟悉模式,但它们存在明显的弱点。由此我们可以得出结论,自动生成有说服力的、合理的论证比生成有意义的语言要困难得多,并且如果要使人工智能系统提出的论证具有说服力,它们就需要一种方法来检查其自身输出的合理性。
细菌病原体会影响我们的日常生活,并对公共卫生构成严重威胁。一旦人们感染了病原细菌,他们就会患有相应的疾病甚至死亡。1直到1920年代亚历山大·弗莱明(Alexander Fleming)首先发现抗生素药物药物,这种现象才改变。2然而,随着抗生物技术的临床使用的增加,细菌抗性已经出现,被认为是当今全球最棘手的公共卫生问题之一。3尽管为解决该问题做了许多努力,但在过去的二十年中,仅发起了数量有限的新抗生素。4,5大多数新开发的抗生素是“喜欢”或“比喜欢”的药物,细菌很快就会产生抗性。6,7因此,迫切需要药物化学家发现具有新作用机理的抗菌剂或相邻者。Boron,具有空的P轨道,是元素周期表中碳邻近的元素,该元素具有多种独特而有价值的特性,可用于药物化学。8