利用可再生资源开发生物粘合剂代表了可持续材料领域的重大进步。CSIR-AMPRI 博帕尔分校已成功开发出一种用于竹子和其他天然植物纤维资源的生物复合材料的生物粘合剂。生物粘合剂可由可再生资源(如淀粉)和其他合适的原材料合成。这些资源丰富,可以持续利用,确保持续供应而不会耗尽自然资源。通过利用这些可再生资源,生物粘合剂有助于减少对石油基粘合剂的依赖,显著降低温室气体排放并有助于环境保护。生物粘合剂的主要优势之一是其增强的生物降解性,从而减少长期环境影响并更易于处理。生物粘合剂开发过程需要更少的能源投入,使其具有成本效益和环保性。此外,生物粘合剂不会形成副产品。这进一步减少了它们对环境的影响和毒性,使其成为制造商和最终用户的更安全替代品。
可持续材料 - 所有供应商和被许可人都负责确保选择用于制造RLC产品的材料和组件满足或超过RLC在本政策中规定的可持续材料要求。为了避免疑问,所有生产RLC产品,材料和组件的设施,包括供应商或被许可人自己的设施,以及其供应商,承包商和分包商的设施,均应满足或超过RLC的可持续材料需求,在此政策中规定,并定期更新。我们希望所有供应商都设定可持续性策略,寻找首选的纤维供应商,并开始或继续采购满足我们可持续性要求的可持续和认证的原材料。
• 监督 Genomics England 的技术、数据和产品需求、机遇和挑战——将谁、什么和为什么结合起来,以确保产品(以及业务和用户需求)由技术实现 • 作为执行领导团队的一部分,制定 Genomics England 更广泛的业务战略 • 制定、分享和执行业务的战略技术和产品路线图 • 确定可提供竞争优势的技术进步机会 • 确保技术和产品生态系统稳健、安全、可扩展并为未来增长做好准备 • 带来变革愿景,使组织能够根据需求制定健全的技术战略
需要鉴定以非常低的速度和良好的杂草控制施用的除草剂,以及最佳产量是尼日利亚的必要性,以进一步减少由于以高速施用除草剂施用而引起的环境污染。因此,在2019年湿季节初和末期,在尼日利亚奥贡州联邦农业大学Abeokuta的教学和研究农场进行了现场试验,以评估农作物系统和杂草控制措施对玉米生长和产量的影响。治疗以分裂布置在随机完整的块设计中进行了三个复制。主要的情节处理由农作物系统(唯一的玉米和玉米/红薯中的编写)组成,而子图处理由六项杂草控制措施组成。对生长,玉米产量和杂草生物量收集的数据进行了方差分析以及使用P≤0.05时最小显着差异分离的处理平均值。结果表明,唯一的玉米比玉米与红薯一起生产高的植物。在种植后9周和12 WAP时,杂草生物量降低了21.3%,至31.4%,与种植玉米相比,玉米与甘薯进行了间隔时,分别降低了杂草。以两种速度以两种速率的氧化氟氟氟二酮加丙烯烯作为出生前除草剂的应用可增强玉米的生长。Isoxaflutole Plus Aclonifene在0.75 kg A.I/ha中,有或没有除草,导致玉米产量更高,并且还会显着降低杂草生物量。关键字:玉米,除草剂,杂草生物量,谷物,hoe
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织
然而,尽管过去有创新,并且目前正在开发药物,但该行业仍面临巨大压力和巨大挑战。业内人士很清楚,开发一种新疗法平均需要 10 到 15 年的时间和 26 亿美元。药物开发过程中的失败很常见,因为第一阶段试验中的绝大多数药物从未投入患者体内。此外,试验进展缓慢且成本高昂,因为通常很难找到足够的患者进行试验,而且专利悬崖即将来临,许多畅销品牌的专利将在未来十年到期,迫使公司进行创新以弥补收入来源的损失。
技术驱动的变革改变了消费服务,银行和经纪也不例外。但是,这些公司提供的数字服务(包括在较小程度上,最大的银行的数字服务)一直落后于其他面向消费者服务的行业。有很多可能的原因,但是主要的罪魁祸首是许多公司仍然依靠本地大型机器机器基础设施。尽管几家大型公司现在正在朝着公共云取得进展,但核心处理仍在整个行业中大多是本地人。这种遗产基础架构又可以使实际采用敏捷软件开发的原则几乎不可能,因为大量的数据和后端流程必不可少,即使是最好的产品所有者也是如此。虽然金融服务行业仍然受到大量监管要求的保护,但结果是,尽管经营数十年的努力以及现成的软件和经济高效的外包服务的可用性,通常具有大量或更少的手动,Swivel-Swivel-椅子,甚至是基于纸质的任务。同样,面向客户的应用程序,无论是基于移动设备还是浏览器的应用程序,都落后于客户期望,并且通常需要在某些情况下进行电话交互或解决问题,尽管这是新一代投资者的主要危险信号。
Natural products from Actinobacteria,Hsi commonly known as actinomycetes, have historically provided humans with numerous antibiotics (e.g., streptomycin, gentamicin, and vancomycin) ( Schatz et al., 1944 ; Cooper and Yudis, 1967 ; Rake et al., 1986 ), anticancer agents (e.g., doxorubicin, bleomycin, and Calicheamicins(Shastri等,1971; Maiese等,1989)和Agrochemicals(例如Avermectin和pinosad)(West,1996; Molinari et al。,2010)。应强调,所有认可的抗生素中约有三分之二来自放线菌,主要由链霉菌物种衍生出来,强调了这些微生物的重要性(Barka等,2016)。从放线菌对新天然产物的发现和生物学评估是后基因组时代的无尽领域,主要是由微生物基因组学和合成生物学的进步驱动。了解放线菌天然产物的生物合成不仅阐明了自然如何从小型构件(例如氨基酸和酰基-COA)中构建这些复杂分子,而且还为提高工业发展的产量提供了基础。一些天然产品具有前所未有的结构支架和令人印象深刻的生物学活动,激发了合成和药物化学家设计和综合药物的下一代。此外,放线菌具有通过发酵技术实现天然产物的优势。
摘要:长波下行辐射(LWDR)是气候与水文模型中的重要驱动参数。与传统地面测量相比,遥感在估算全球 LWDR 方面具有独特的优势。然而,对于目前的遥感任务而言,与典型的具有全球覆盖和小时时间分辨率的卫星 LWDR 产品一样,云和地球辐射能量系统-天气图(CERES-SYN)大气顶部和地表通量以及云的空间分辨率较低(1°×1°)。现有的遥感 LWDR 产品在精度、时空分辨率以及解释和量化不同尺度上长波辐射变化的能力方面仍有很大改进空间。为了克服这些限制,本文基于中分辨率成像光谱仪(MODIS)测量,开发了一种新的全球 LWDR 产品,该产品具有更高的精度(全球 RMSE < 30 W m −2)、高时间分辨率(小时)和空间分辨率(5 km)。它是长期地球系统时空无缝辐射收支数据集(简称LessRad)中的一个LWDR产品,作为第一个长期高分辨率时空连续的LWDR产品(2002-22,1小时,5公里),LessRad在研究更精细尺度上的LWDR时空变异性方面显示出优势,并为分析陆气相互作用、量化气候反馈等各种应用提供了宝贵的数据源,对理解地球能量收支和动态具有潜在的帮助。
欢迎使用Pinoy Biotek杂志的第四期!与农业部(DA Biotech)的菲律宾农业和渔业生物技术计划合作,我们很高兴与您分享旨在帮助菲律宾农业和渔业行业的不同技术。在这个问题上,我们重点介绍了抗病性作物,这些作物将帮助农民和食品生产者产生更高的产量。其中之一是金米,它将有助于解决菲律宾的维生素A缺乏症,还可以保护稻米作物免受疾病的侵害,尤其是通龙和细菌疫病。关于耐香蕉束顶部病毒(BBTV)的香蕉品种开发的文章强调了其有助于减少产量损失的潜力。在此问题上介绍了两个循环介导的等温扩增(LAMP)技术。用于Abaca病毒检测的Lampara套件有助于农民监测其屁股作物的状况,而Juan Amplification