磁性生物传感和肌肉骨骼修复。jeet Kumar Gaur,机械工程系,IISC班加罗尔,2024年11月21日,上午11:00,会议室:我@IISC摘要的开发用于肌肉骨骼修复的高级纳米复合材料代表了生物医学工程的重大飞跃。这些纳米复合材料利用水凝胶和羟基磷灰石(HAP)的特性来应对组织修复和再生的关键挑战。水凝胶具有高生物相容性和水含量,可为各种应用(包括软骨修复)提供灵活性和适应性。同样,HAP复合材料由于与天然骨矿物质的相似性而获得了骨骼替代的牵引力。将纳米颗粒整合到这些材料中可以显着增强其机械性能,生物活性和整体肌肉骨骼修复的有效性。水凝胶是由于其三维网络而以其生物相容性和高水位容量而闻名的柔性聚合物。这些水凝胶可以通过使用各种单体和交联器来增强其性能来修饰。研究探索了将水凝胶与纳米颗粒(例如磁性颗粒)融合在一起,以创建磁性生物传感和药物输送中的二凝胶。将碳纳米管(CNT)掺入带有镍纳米颗粒的聚丙烯酰胺(PAM)水凝胶中,可显着提高磁敏感性,强度和耐磨性。cnts将磁矩提高了85%,磁性增强,并且由于其与镍纳米颗粒的润滑性和协同作用,使磨损降低了40%。但是,传统的PAM水凝胶在机械强度和抗穿刺性方面面临挑战。为了解决这个问题,使用氧化钛(TiO2)和CNT分别和组合来提高PAM水凝胶的强度。PAM-TIO2-CNT复合材料表现出增强的抗压强度,弹性模量和刺激性。它还表现出自我修复的特性,生物活性和高细胞相容性,细胞活力约为99%。此外,为骨科应用开发了羟基磷灰石(HAP)复合涂料。制造了三个HAP复合材料(HAP + CNT,HAP + GRO和HAP + HBN),并以耐磨性,机械强度,亲水性和细胞毒性为特征。在其中,HAP + HBN复合材料表现出骨植入物的最佳特性,由于HBN的协同作用,具有提高的耐磨性,机械强度和亲水性。总体而言,将CNT和TIO2等纳米颗粒掺入水凝胶和HAP复合材料中代表了生物医学应用的材料特性的显着进步,包括软骨修复和骨骼植入物。这些肌肉骨骼修复纳米复合材料提供了增强的性能和耐用性,为改善组织再生和骨科修复的临床结果铺平了道路。关于扬声器Jeet Kumar Gaur是一名综合博士生,在IISC机械工程部的M S BOBJI(FM)实验室工作。用于表征的各种技术从从VSM获得的磁性磁滞图(振动样品磁力测定法)上磨损速率计算。在他的博士学位工作中,他与碱基合成并研究了纳米复合材料,作为有机聚合物(聚丙烯酰胺)和陶瓷(羟基磷灰石),用于磁性生物传感和肌肉骨骼修复应用。虽然聚丙烯酰胺纳米复合材料可用于软组织(例如软骨)替代品,但基于羟基磷灰石的纳米复合材料对于诸如骨置换涂料材料之类的硬组织可行。
概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。 用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。 因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。 当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。 用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。 表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。 为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。 两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。 教学教师1。概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。教学教师1。该提案证明了氧化铁磁NP的潜在用途是提取血细胞的极好的车辆,尤其是当它们用那些具有良好生物相容性与血细胞膜具有良好生物相容性的两亲性分子稳定时。因此,只有当溶血反应最小的时候,并且只有当磁NPS与细胞膜表达生物相容性时,则该提取才能有效。因此,该提案对于对生物界面和批量上磁NP的适用性的基本理解至关重要。目标本课程的主要目标如下:量化溶质 - 溶剂相互作用的大量和空气界面。b。两亲性分子和亲水性 - 脂肪平衡(HLB)。c。具有头部组和疏水性尾部修饰的高表面活性双子表面活性剂的合成和表征(间隔长n = 2、4、6、8和烃链长度M = 8、10、12、12、14、16)。d。从实验室量表到试点植物的生产,两亲性稳定的氧化铁NP的合成。e。氧化铁NPS在从水溶液中定量提取血细胞的适用性,以及使用磁性纳米颗粒的风险和缓解。Mandeep Singh Bakshi博士2。Jaspreet博士Kaur Rajput3。Rajeev Jindal博士
有机化学是一个重要的研究领域,它涵盖了各种反应,合成和有机化合物的分析。这些化合物由碳和氢原子组成,在日常生活中有许多应用,包括工业,农业以及酶或蜡等天然物质。该学科解决了基本原理,包括对有机物质的合成和分析。该领域的范围很大,涵盖了从化学产品到各种天然物质的所有类型的有机化合物。有机化学具有丰富的历史,可以追溯到1828年,当时弗里德里希·沃勒(Friedrich Wohler)通过反应成功合成尿素,证明可以从更简单的物质中产生化合物。这一发现导致了1901年至1931年之间有机化学研究的诺贝尔奖。对碳基分子的研究至关重要,因为这些物质构成了我们每天与我们每天相互作用的所有生物体和许多非生物材料的基础。有机化学家在医学中起着至关重要的作用,创造了对各种药物必不可少的化合物。他们还开发了新型塑料,溶剂和服装染料等产品。有机化学的范围很广,涵盖了多个学科,包括药房,生物化学,材料科学,冶金等等。此外,对有机化学概念的理解在解决诸如污染控制和全球变暖等问题方面变得越来越重要。各个领域的有机化学家的贡献是显着的。复杂分子的合成方法的最新进展显着影响了科学研究的各个领域,强调了有机化学在研究中及其在现实世界中的应用中的重要性。他们的工作导致了医疗保健,农业等方面的突破。例如,在医学领域,他们开发了有针对性的癌症治疗方法,其副作用较少。有机化学家还通过使用自然过程而不是可能损害环境的合成化学物质来增加全球农作物的产量,从而发挥着至关重要的作用。此外,他们还参与生产可生物降解的塑料,该塑料为传统石化基材料提供了环保替代品。这些可生物降解的塑料使用较少的能量,可以通过微生物迅速堆肥或分解。在药房中,有机化学为新药候选者提供较少的副作用,有助于减少对麻醉止痛药的依赖,同时减轻慢性病等慢性病或癌症。有机化学涉及各种反应,包括合成,分解和单个位移。有机化学反应涉及复杂的过程,其中不同的元素相互相互作用。I型和II反应具有不同的特征,由于催化剂的存在,前者不需要氧气,而后者则需要氧气。此外,还有各种类型的水解反应,例如水合和分解,可以归类为替代,分解和消除反应。虽然不可能列出由于无限可能性引起的所有可能反应,但我们提供了下面的一些例子: *均匀反应:当分子分解并形成新的反应时发生 * hydronium离子交换反应:在分子之间转移蛋白质时形成了proton时形成的水解反应 *当水反应之间发生:当水反应时发生:当水反应时发生触发时(氧化物或氧化物),或者氧化氧化物或氧化物的反应时)(氧化物),氧化物或氢氧化物(氧化物)时)获得的电子,具有两个亚型:单电子还原(I型)和双电子还原(II型)这些反应对于理解化学动力学至关重要。单位位移反应通常涉及芳香族化合物上的亲核位移,并且可以通过背面或前侧攻击发生。α氢消除反应在从α碳原子的水中从有机分子中去除氢原子时,就会发生α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。 卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。 有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。 它也用于通过破裂石油生产车辆和其他机械的燃料。 此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。它也用于通过破裂石油生产车辆和其他机械的燃料。此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。有机化学是现代生活的骨干,影响了从粮食生产到医学开发的一切。必须掌握有机分子如何相互作用,以对自己的健康和亲人做出明智的决定。加入我们的旅程,探讨该领域在塑造过去和未来的世界上的重要贡献。一些关键概念包括: - 脂肪含量的烃,其定义,类型和示例 - 命名法,其重要性和命名系统 - 元指导组和Ortho para指导群体 - 核寄生者和亲电的群体 - 介绍,示例,示例和应用程序中的其他关键主题包括有机化的化学反应 - 副派系,构成了核定的核定反应,苯的反应 - 甲苯和苯的硝化 - 苯的卤化,其激活和机制 - 弗里德尔 - 克制酰化和烷基化,它们的机制和实例 - 苯的磺化 - 基于其结构和属性的苯,其定义,机制,机制,机制,机制和解决的有机化合物。它们源自煤炭,植物,动物,天然气和其他来源。有机化学在我们的日常生活中起着重要作用,影响了我们吃的食物,我们穿的衣服,服用的药物以及我们在家中使用的物品。有机化学的影响最直接在我们消耗的食物中。蛋白质,脂肪和碳水化合物都由提供能量和养分的有机化合物组成。塑料来自合成聚合物,而木材主要由纤维素组成。大米,小麦和土豆等食物主要由淀粉组成,人体将其转化为葡萄糖以获得能量。在鱼,肉,鸡蛋和豆类中发现的蛋白质对于建造和修复组织以及代谢至关重要。理解这些概念对于欣赏有机化学在我们日常生活中的作用及其对现代社会的意义至关重要。有机化合物在我们的日常生活中起着至关重要的作用,从营养和食物保存到衣服和建筑材料。这些化合物由甘油和脂肪酸组成,这些甘油和脂肪酸有助于保持身体的温暖并储存能量。除了营养重要性外,有机化合物还用作农药和除草剂来保护作物。食品防腐剂(如苯甲酸钠)可以防止微生物生长,而食用颜色和人造甜味剂可以增强风味和外观。天然纤维(如棉,羊毛和丝绸)由有机化合物组成,包括纤维素和蛋白质。纤维素是在植物细胞壁中发现的多糖,使这些纤维具有独特的特性。尼龙,聚酯和丙烯酸等合成纤维也由有机化合物制成,提供耐用性和多功能性。在纺织工业中,合成纤维由于其寿命长和对收缩的抵抗而受欢迎。在构造中,使用木材,塑料和油漆等有机化合物来建造和装饰房屋。医学也从有机化学中受益匪浅,使用有机化合物开发了许多挽救生命的药物。抗生素(如阿莫西林和青霉素)已彻底改变了细菌感染的治疗。抗癌药,溃疡药,心脏药物,抗抑郁药和维生素都是改善人类健康的有机分子的例子。控制体内各种生物学过程的维生素和激素也是有机化合物。维生素C对于组织愈合和酶功能至关重要,而胰岛素则调节血糖水平。有机化学对教育产生了重大影响,纤维素被用于生产纸张。有机化合物在我们的日常生活中起着至关重要的作用,从教育到个人护理产品,甚至是洗涤剂等家居用品。通过有机化学创建的这些化合物构成了许多日常物体的基础。例如,肥皂是通过用坚固的碱化油和脂肪制成的,而香水却依靠酯和醇来散发出不同的气味。此外,聚合物,PVC,三聚氰胺和Teflon之类的聚合物由于其独特的特性而被广泛使用,例如灵活性和对化学物质和热量的耐药性。由于这些化合物被编织成现代生活的各个方面,因此它们强调了有机化学在塑造我们世界中的重要性。通过探索有机化合物的应用,我们可以深入了解化学对我们日常生活的变革力量及其推动未来科学突破的潜力。
《医疗机构消毒和灭菌指南 2008》由 William A. Rutala 等人编写。该指南概述了医疗保健专业人员在各种环境中(包括医院、门诊和家庭护理)使用消毒剂和灭菌产品的方法。它为不同类型的物品提供了建议,包括关键、半关键和非关键表面以及设备和仪器。该指南涵盖的主题包括:* 术语定义* 消毒和灭菌方法* 关键、半关键和非关键物品* 自 1981 年以来消毒和灭菌的变化* 医疗设备的消毒* 实施 Spaulding 方案的担忧* 内窥镜和其他器械的再处理* 艰难梭菌和其他新出现的病原体的灭活* 抗生素耐药细菌对消毒剂的敏感性* 表面、空气和微生物污染* 影响消毒和灭菌效果的因素该指南还讨论了各种消毒产品,包括氯化合物、甲醛和酒精,以及它们的作用方式。医疗设施消毒和灭菌方法概述:循证建议指南。该文件概述了清洁、消毒和灭菌患者护理医疗设备以及清洁和消毒医疗环境的首选方法。此处给出文章文本 灭菌与消毒:了解医疗保健环境中的差异 灭菌是一种使用压力蒸汽或干热等方法完全消除所有形式的微生物生命的过程。然而,一些医疗专业人士错误地使用“灭菌”来描述消毒,这涉及消除无生命物体上除细菌孢子以外的许多或所有病原微生物。消毒可以通过各种因素实现,包括液体化学品、湿式巴氏灭菌和用于较短暴露时间的杀菌剂。消毒的有效性受多种因素的影响,例如之前的清洁、微生物污染的类型和程度、杀菌剂的浓度以及物体的物理性质。与灭菌不同,消毒不是杀孢子剂,这意味着它不能通过一次使用杀死细菌孢子。然而,一些消毒剂可以有效对抗孢子,但需要长时间暴露。消毒有不同的级别,包括低级、中级和高级消毒,它们杀死微生物的能力各不相同。清洁是高水平消毒和灭菌之前必不可少的步骤,因为表面上的有机和无机物质会影响这些过程的有效性。净化可去除物体上的病原微生物,使物体可以安全处理或丢弃。抗菌剂通常仅用于无生命物体。防腐剂通常用于皮肤,而不是用于表面消毒,而消毒剂不用于皮肤消毒,因为它们可能会损害皮肤和其他组织。各种类型的抗菌剂,如杀病毒剂、杀真菌剂、杀细菌剂、杀孢子剂和杀结核剂,都可以消除其前缀所示的特定微生物。例如,杀细菌剂是一种杀死细菌的药剂。Earle H. Spaulding 于 30 多年前开发了一种合理的消毒和灭菌方法,根据使用过程中的感染风险将患者护理物品和设备分为关键、半关键和非关键类别。这种分类方案已被感染控制专业人员广泛采用和改进。如果关键物品被任何微生物污染,则会带来很高的感染风险。这些物品包括进入无菌组织或血管系统的物体,例如手术器械、心脏和尿道导管、植入物以及在无菌体腔中使用的超声波探头。大多数关键物品应以无菌形式购买或使用蒸汽或其他方法灭菌。半关键物品接触粘膜或破损皮肤,包括呼吸治疗和麻醉设备、某些内窥镜和其他医疗器械。这些物品需要使用化学消毒剂进行高水平消毒,以消除除少量细菌孢子外的所有微生物。FDA 批准使用过氧化氢酸作为高水平消毒剂,前提是满足某些因素。在为患者护理物品选择消毒剂时,还应考虑长期使用后的化学兼容性。高水平消毒可消除除细菌孢子以外的所有微生物,并在清洁后防止感染传播。腹腔镜和关节镜等进入无菌组织的设备最好在患者之间进行灭菌,但由于设计复杂性,美国有时也会使用高水平消毒。适当的清洁先于高水平消毒或灭菌。虽然灭菌是较新型号的首选,但目前尚未发布有关这些内窥镜在经过适当清洁和消毒后进行高水平消毒的疫情报告。用无菌水冲洗内窥镜可防止残留消毒剂引起的不良影响,也可以使用自来水或过滤水冲洗,然后用酒精冲洗并强制风干。以保护性的方式干燥和储存物品可防止其再次受到污染。水疗池等非关键表面使用中级消毒剂进行消毒,建议对吹嘴和肺量计管进行高水平消毒,但根据过去的研究,清洁肺量计的内表面被认为没有必要。每次治疗患者时,都要更换使用过的过滤器和近端吹嘴,以防止过滤器远端受到污染。非关键物品与完整皮肤接触但不与粘膜接触,由于其具有天然的微生物屏障,因此无需灭菌。非关键患者护理物品的例子包括便盆、血压袖带和计算机。这些物品通常可以在使用时就地进行消毒,而不必运送到中央处理区。低水平消毒剂(例如在环境保护署 (EPA) 注册的消毒剂)已被证明可有效对抗一系列微生物,包括细菌、酵母菌、分枝杆菌和病毒。但是,必须遵循制造商的使用说明,包括暴露时间和稀释比。非关键环境表面(例如床栏和床头柜)也可能藏有微生物,这些微生物可通过手接触或污染医疗设备传播。通常使用拖把和可重复使用的清洁布对这些表面进行消毒,但它们通常需要定期清洁和消毒以防止污染扩散。建议经常清洗拖把,并使用浸有消毒剂的一次性毛巾对非关键表面进行局部清洁。自 1981 年制定以来,CDC 环境控制指南经历了重大变化。首先,由于甲醛-酒精毒性大、使用量低,因此不再将其作为推荐的化学灭菌剂或高效消毒剂。增加了过氧化氢、过乙酸及其组合等新化学灭菌剂。3% 酚类和碘伏对细菌孢子和真菌的功效有限,因此被从高效消毒剂中删除。异丙醇和乙醇被排除在高效消毒剂之外,因为它们无法灭活细菌孢子和亲水性病毒。 1:16 稀释的戊二醛-苯酚-苯酚钠被取消了作为高效消毒剂的资格,因为它缺乏杀菌、杀真菌、杀结核和杀孢子活性。高效消毒所需的暴露时间已增加到 12 分钟或更长,具体取决于 FDA 批准的标签声明和科学文献。该指南现在包括新的主题,例如新出现的病原体、生物恐怖分子、血源性病原体的灭活以及内窥镜等复杂医疗器械的消毒。医疗机构消毒指南(包括 Spaulding 方案的实施)引起了人们对过度简化的担忧,因为它在处理复杂医疗设备和某些传染性病原体方面存在局限性。这些物品不能进行蒸汽灭菌,因为它们对热敏感;此外,使用环氧乙烷进行灭菌对于患者之间的常规使用来说太耗时了。但是,缺乏证据表明对这些物品进行灭菌可以改善患者护理。许多较新的型号可以承受蒸汽灭菌,这是关键物品的首选方法。实施 Spaulding 方案的一个问题是处理与接触无菌身体组织的关键器械一起使用的半关键器械,如内窥镜。例如,用于上消化道检查的内窥镜在与无菌活检钳一起使用时或用于食管静脉曲张大量出血的患者时不应被视为半关键物品。提供高水平消毒并去除细菌孢子以外的微生物,该设备不代表感染风险。尚未有报告称内窥镜经过适当的高水平消毒后会感染产孢细菌。另一个问题是,高水平消毒的最佳接触时间尚未确定或因专业组织而异,导致对半关键物品的消毒策略不同。在找到更简单有效的替代方案之前,遵循本指南和 CDC 指南是明智之举。医生使用内窥镜诊断和治疗多种疾病,但尽管与使用内窥镜相关的感染发病率很低,但与受污染的内窥镜相关的医疗相关疫情比与任何其他医疗设备相关的疫情都要多。为防止医疗相关感染的蔓延,所有热敏内窥镜在每次使用后都必须妥善清洁并进行高水平消毒。高水平消毒可以消灭所有微生物,尽管当微生物数量较多时,可能会有少数孢子存活。柔性内窥镜在每次使用过程中都会受到高水平的微生物污染,生物负荷水平从 105 到 1010 CFU/mL 不等。清洁可将微生物污染水平降低 4-6 log10。研究表明,彻底清洁可消除内窥镜中的微生物污染 104,105。同样,其他研究人员发现,只有在正确清洁设备后,环氧乙烷灭菌或浸泡在 2% 戊二醛中 20 分钟才有效 106,13,14。FDA 医疗机构消毒和灭菌指南 (2008) 强调使用清除的液体化学灭菌剂和高水平消毒剂来再处理柔性内窥镜等热敏感医疗设备的重要性。目前,FDA 批准的配方包括 >2.4% 戊二醛、0.55% 邻苯二甲醛 (OPA) 和其他具有已证实抗菌活性的配方。然而,一些氧化化学物质会损坏内窥镜,这突显出用户需要咨询设备制造商有关杀菌剂兼容性的信息。使用 FDA 批准的产品,建议使用戊二醛或使用过氧乙酸的自动液体化学灭菌工艺。美国胃肠内镜学会 (ASGE) 建议不要使用含表面活性剂的戊二醛溶液,因为冲洗时残留物会很困难 108。邻苯二甲醛已成为许多医疗机构中戊二醛的替代品,具有无刺激和减少暴露监测等优点。未经 FDA 批准的消毒剂,包括碘伏、氯溶液、酒精、季铵化合物和酚类,应强烈反对使用,因为缺乏经过证实的功效或材料不相容。鉴于本文文本坚持既定规则导致了与胃肠内窥镜 (8) 和支气管镜 (7)、(12) 相关的感染。向 FDA 设备和放射健康中心报告任何与设备相关的问题至关重要。一项调查发现,即使在消毒和灭菌程序完成后,71 个胃肠内窥镜内部通道的细菌培养物中仍有近 24% 的细菌生长过多,其中 9 个机构使用市场上不再提供的产品(6 个使用 1:16 戊二醛苯酚盐)或未经 FDA 批准的高效消毒剂。与手动再处理相比,自动内窥镜再处理器具有多项优势,包括步骤自动化和标准化、减少错过必要步骤的风险以及减少人员接触消毒剂或灭菌剂。然而,AER 故障与感染爆发 (7)、(133) 或定植 (134) 有关。此外,AER 水过滤系统可能无法提供可靠的“无菌”冲洗水 (135)、(136)。正确建立 AER 和设备之间的连接器对于消毒剂和冲洗水的完全流动至关重要。有些内窥镜需要使用 2 至 5 毫升注射器进行手动再处理,例如具有升降线通道等功能的十二指肠镜,需要大多数 AER 无法达到的冲洗压力。涉及可拆卸部件的疫情 (138)、(139) 强调了在高水平消毒或灭菌之前进行清洁的重要性。一些阀门现在可用作一次性或蒸汽灭菌产品,而 AER 和内窥镜需要进一步开发以防止成为传染源。带有一次性组件的内窥镜可能为传统化学消毒/灭菌提供替代方案。新技术包括可吞咽的相机,可传输小肠的彩色图片。为确保正确再处理,应严格遵守已发布的指南 (12)、(38)、(108)、(113-116)、(145-148)。不幸的是,审计显示人员并未始终遵守再处理指南 (149-151),疫情仍在继续发生 (152-154)。负责再处理内窥镜器械的每位人员都必须接受初始和年度能力测试。用液体化学灭菌剂对内窥镜进行消毒或灭菌的过程包括泄漏测试后的五个步骤:1.清洁:机械清洁内外表面,包括刷内部通道和用水和洗涤剂或酶清洁剂冲洗每个通道。2.消毒:将内窥镜浸入高效消毒剂(或化学灭菌剂)中,确保接触所有可触及的通道,如抽吸/活检和空气/水通道。3.冲洗:用无菌水或过滤水冲洗内窥镜和所有通道,然后用酒精擦干插入管和内通道后再存放。以防止再污染和促进干燥的方式存放内窥镜,如垂直悬挂。干燥对于降低冲洗水中的微生物再污染风险至关重要。一项研究表明,再处理后的内窥镜在强制空气循环下垂直存放时通常不会滋生细菌。其他研究发现,所有内窥镜在经过高水平消毒后均无菌,后续评估中只有少数内窥镜呈阳性。所有冲洗样品均保持无菌。虽然一些研究人员建议仅使用无菌水或过滤水,因为自来水中存在微生物,但已发表的指南和科学文献支持使用自来水,然后用酒精冲洗并强制风干。此外,遵循此方案时未发现疾病传播的证据。一项研究发现过滤后的冲洗水是细菌污染的来源,但引入热水冲洗管道系统可降低阳性培养的频率。当医务人员将内窥镜放在推车上时,可能不清楚它们是否已正确清洁。一些指南建议在使用前对某些内窥镜进行再处理,而其他指南则不建议。专业组织普遍认为,只有在原始过程正确的情况下才应进行再处理。为了确保质量,一些机构会对处理后的内窥镜进行随机细菌测试。再处理的内窥镜除了少量无害微生物外,不应含有细菌。尽管指南建议定期检测最终冲洗水,但尚未建立标准检测方法。此外,没有证据表明对再处理后的内窥镜或其冲洗水进行常规培养可以预防感染。对内窥镜和水进行取样涉及评估消毒剂的有效性和清洁程序。还探索了评估内窥镜清洁的新方法。然而,没有一种方法被广泛接受为标准。内窥镜不应存放在与受污染仪器接触过的便携箱中。这些手术箱必须定期清洁和处理,以防止再次污染。定期进行感染控制巡查和遵守政策对于预防患者感染至关重要。腹腔镜和关节镜周围的感染控制实践仍存在争议,一些人主张将高水平消毒作为最低标准,而另一些人则建议将灭菌作为首选方法。高水平消毒的支持者指出,会员调查和机构经验表明感染风险较低(0.2% 过氧乙酸。相反,浓度为 1000 ppm 有效氯的二氯异氰尿酸钠在 10 分钟时对艰难梭菌孢子的 log10 减少因子较低。OSHA 的血源性病原体标准要求在接触血液或其他潜在传染性物质后使用消毒剂清洁和净化设备和表面。该标准强调了 EPA 注册的消毒剂的重要性,特别是那些标明对 HIV 和 HBV 有效的消毒剂。然而,1997 年,OSHA 修改了其政策,在满足某些条件的情况下考虑在非血液污染的表面使用 EPA 注册的消毒剂。研究表明,对于大量血液溢出,建议使用 1:10 的 EPA 注册次氯酸盐溶液进行最终稀释,以最大限度地降低清理过程中因经皮肤损伤而感染的风险。新兴病原体如隐孢子虫、幽门螺杆菌、大肠杆菌 O157:H7、轮状病毒、人乳头瘤病毒、诺如病毒和严重急性呼吸道综合征 [SARS] 冠状病毒等受到日益关注。此处给出文章文本已研究了各种病原体对化学消毒剂和灭菌剂的敏感性。大多数新兴病原体都对目前可用的化学品敏感,但也有一些例外。小隐孢子虫对氯和医疗保健中使用的大多数常见消毒剂具有抗性,包括乙醇、戊二醛和次氯酸盐。然而,过氧化氢可以灭活大于 3 log10 的 C. parvum。蒸汽、EtO 和过氧化氢气体等离子体等灭菌方法可以完全灭活 C. parvum。其他病原体,如大肠杆菌 O157:H7,通常对消毒剂敏感。研究表明,低浓度(1 ppm)的氯可在 1 分钟内消除约 4 log10 的大肠杆菌。电解氧化水也可有效降低大肠杆菌的活力。使用季铵化合物、酚类和次氯酸盐可显著降低大肠杆菌水平。研究表明,含氯化合物的消毒剂可有效对抗接种在苜蓿种子或芽苗以及牛肉胴体表面的大肠杆菌。研究了消毒剂对抗幽门螺杆菌的有效性,结果表明乙醇(80%)和戊二醛(0.5%)具有很强的杀菌作用。然而,有机物的存在会降低某些消毒剂(如聚维酮碘和次氯酸钠)的功效。研究了各种方法对抗幽门螺杆菌和其他病原体的功效。用肥皂和水清洗无法消除内窥镜中的幽门螺杆菌,浸泡在乙醇或甲醇中也无法消除。但是,用 2% 戊二醛消毒可有效消除细菌。一些研究发现,某些消毒剂(如酚类和季铵化合物)在使用后一分钟内即可有效对抗轮状病毒。一项人体挑战研究表明,含有乙醇和苯酚的消毒喷雾可有效阻断轮状病毒从受污染表面转移到指腹。然而,关于酒精或其他消毒剂对抗 HPV 或诺如病毒的有效性的信息有限,因为这些病毒不能在组织培养中生长。环境表面消毒不当被认为是导致诺如病毒传播的原因。研究发现,FCV(猫杯状病毒)对各种消毒剂敏感。氯、戊二醛和碘基产品可有效灭活病毒,而季铵化合物、洗涤剂和乙醇则无法完全消灭病毒。稀释至 1000 ppm 有效氯的漂白剂可在一分钟内将 FCV 传染性降低 4.5 个对数。其他有效的消毒剂包括加速过氧化氢、二氧化氯、四种季铵化合物的混合物以及乙醇和季铵化合物的组合。发现季铵化合物可在 10 分钟内对抗硬表面上的干燥 FCV 悬浮液。70% 的乙醇和 70% 的 1-丙醇可在 30 秒内将 FCV 降低 3-4 个对数。CDC 宣布,一种以前未知的人类冠状病毒是 SARS 的主要假设,它可导致胃肠炎。研究已经调查了化学杀菌剂对冠状病毒的杀病毒功效。经研究发现,次氯酸钠、70% 乙醇和聚维酮碘在接触一分钟后即可有效对抗冠状病毒 229E。聚维酮碘已被证实可有效对抗人类冠状病毒 229E 和 OC43。70% 乙醇和聚维酮碘在一分钟内可完全灭活 SARS 冠状病毒,2.5% 戊二醛在五分钟内也可完全灭活 SARS 冠状病毒。由于 SARS 冠状病毒在室温下至少可稳定存在一到两天,因此表面可能成为污染源,应进行消毒。应使用 EPA 注册的消毒剂或 1:100 稀释的家用漂白剂和水进行表面消毒。对于已知或疑似 SARS 患者,无需改变半危及和危及医疗设备的高水平消毒和灭菌方法。处理阿米巴原虫污染时,高水平消毒的暴露时间至关重要,因为如果处理不当,阿米巴原虫污染会促进感染305。如果这些微生物存在于器械上,可能需要延长浸泡时间或使用其他消毒剂来防止进一步传播。鉴于对生物恐怖主义的担忧,出版物强调了与生物制剂相关的风险306、307。CDC 已将几种可迅速传播、导致高死亡率并引发公众恐慌和社会混乱的高优先级病原体归类308。这些病原体包括炭疽芽孢杆菌(炭疽)、鼠疫耶尔森氏菌(鼠疫)、天花、肉毒梭菌毒素(肉毒中毒)、土拉弗朗西斯菌(土拉菌病)、丝状病毒(埃博拉出血热、马尔堡出血热)和沙粒病毒(拉沙[拉沙热]、胡宁[阿根廷出血热])308。关于灭菌和消毒在生物恐怖主义中的作用,可以注意到这些药剂对杀菌剂的敏感性与其他相关病原体相似309。例如,天花与牛痘相似,而炭疽杆菌与萎缩芽孢杆菌相似312。这表明人们可以从现有的遗传相似生物数据中推断。此外,许多生物恐怖剂在环境中很稳定,使受污染的表面或污染物成为潜在的传播源315。此外,在评估可能接触生物恐怖剂的患者时,目前的消毒和灭菌实践似乎适合管理患者护理设备和环境表面310。虽然次氯酸钠对表面消毒有效,但在发生生物恐怖袭击时可能需要特殊程序311。工程生物恐怖剂对消毒和灭菌过程不太敏感的可能性在理论上令人担忧309。与化学品接触相关的风险涉及多种因素,包括接触时间、强度和途径。这可能导致急性或慢性毒性。急性毒性通常是由于化学物质意外泄漏而发生的,导致突然接触,可能需要紧急救治。另一方面,慢性毒性是由于长期接触较低浓度的化学品而引起的。雇主有责任告知工人潜在的危害并实施控制措施。职业安全与健康管理局 (OSHA) 要求危险化学品制造商提供材料安全数据表 (MSDS),可能接触到这些材料的员工必须随时可以获取。许多与医疗保健相关的化学品都设定了接触限值,OSHA 公布的限值具有法律效力。这些限值通常表示为 8 小时工作日和 40 小时工作周的时间加权平均值。例如,环氧乙烷 (EtO) 的允许暴露极限 (PEL) 为 8 小时平均 1.0 ppm。美国疾病控制中心国家职业安全与健康研究所 (NIOSH) 建议的暴露极限 (REL) 可在整个工作寿命内保护工人的健康和安全。这些准则还考虑了皮肤影响和全身吸收,这些吸收可能在暴露极限以下并通过皮肤接触而不吸入而发生。有效使用消毒剂对于各种环境中的患者安全至关重要。化学消毒剂可以在处理前用亚硫酸氢钠或甘氨酸等化学品中和。然而,这种方法存在毒副作用和再污染等风险。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保安全的患者环境。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可用洗涤剂清洗,而血液溢出应根据 OSHA 规定处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。一次性物品也可以使用,可重复使用的物品可以在医院消毒。一些环保组织提倡使用“环保”产品替代商业杀菌剂。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。