抽象背景世界卫生组织(WHO)促进了心脏技术包,以改善全球高血压控制,但尚未对其有效性进行严格评估。目的是比较实施心脏与诊所的诊所中的高血压结局,以继续在孟加拉国农村进行常规高血压护理。方法在孟加拉国农村进行了Upazila Health Complex(UHCS;初级医疗机构)中匹配的PAIR集群准实验试验。招募了不受控制的高血压(血压(BP)≥140/90 mm Hg的3935例患者(70.5%的女性),无论治疗史均≥140/90 mm Hg):1950名来自7次心脏UHC的患者,来自7个心脏UHC和1985例来自7种匹配的常规护理UHC的患者。主要结果是在患者家中测得的6个月时的收缩BP;次要结局是舒张压,高血压控制率(<140/90 mm Hg)和随访的损失。多变量混合效应线性和泊松模型。在干预组中基线平均收缩期BP为158.4 mm Hg,通常的护理组为158.8 mm Hg。在6个月时,95.5%的参与者完成了随访。与通常的护理相比,干预措施显着降低了收缩压(-23.7 mm Hg vs -20.0 mm Hg;净差-3.7 mm Hg(95%CI -5.5.1至2.2))和舒张BP(-10.2 mm Hg vs -hg vs -8.3 mm hg; ng差异; 95 MM Hg; n.2.95 MM HG; 95 MM HG;至–1.1))并改善了高血压控制(62.0%vs 49.7%,净差为12.3%(95%CI 9.0至16.8))。干预组中错过的诊所就诊率较低(8.8%vs 39.3%,p <0.001)。试用注册号NCT04992039。WHOTS套餐在孟加拉国农村实施后的结论降低,与通常的护理相比,高血压控制得到了显着改善。
利用电磁 (EM) 场进行的无线通信是人体周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中被大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战以及低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,避免了因没有场模态转换而导致的转导损耗,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗。 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 中使用差分激励,在接收器 (RX) 中使用差分信号拾取,同时通过阻断流经脑组织的任何直流电流路径,在 1MHz 载波频率下提供比传统人体电流通信 (G-HBC) 低 ~41 倍的低功耗。由于通过人体组织的电信号传输是电准静态的,频率高达几十 MHz,因此 BP-QBC 可实现从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。BP-QBC TX 的功耗在 1Mbps 时仅为 0.52 μW(占空比为 1%),这在从可穿戴设备中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。这种低端到端通道损耗和高数据速率是由一种全新的大脑通信和供电方式实现的,在神经生物学研究、脑机接口、电疗和联网医疗领域具有深远的社会和科学影响。
利用电磁 (EM) 场进行的无线通信是人身周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中产生大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战并实现低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗,从而避免了因没有场模态转换而导致的转导损耗。 12 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 处使用差分激励,在接收器 (RX) 处拾取差分信号,同时通过阻断通过脑组织的任何直流电流路径,在 1MHz 载波频率下提供约 41 倍的低功耗,相对于传统的人体电流通信 (G-HBC)。由于通过人体组织的电信号传输是电准静态的,频率高达数十 MHz,因此 BP-QBC 允许从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。 BP-QBC TX 的功耗在 1Mbps(占空比为 1%)时仅为 0.52 μW,这在从可穿戴中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。如此低的端到端通道损耗和高数据速率是由一种全新的脑部通信和供电模式实现的,对神经生物学研究、脑机接口、电药物和互联医疗保健等领域具有深远的社会和科学影响。
可变形配准是纵向和基于人群的图像分析的基础。然而,由于婴儿时期大脑发育迅速,精确配准同一受试者的纵向婴儿大脑 MRI 图像以及不同受试者的横截面婴儿大脑 MRI 图像具有挑战性。在本文中,我们提出了一种可循环使用的深度神经网络来配准婴儿大脑 MRI 图像。我们提出的方法有三个主要亮点。(i)我们使用脑组织分割图而不是强度图像进行配准,以解决生命第一年脑组织对比度快速变化的问题。(ii)单个配准网络以一次性方式训练,然后多次循环应用于推理,从而可以逐步恢复复杂的变形场。(iii)我们还在配准网络中提出了自适应平滑层和组织感知反折叠约束,以确保估计变形的生理合理性,而不会降低配准精度。与最先进的配准方法相比,实验结果表明,我们提出的方法实现了最高的配准精度,同时仍保持了变形场的平滑度。我们提出的配准网络的实现可在线获得。
摘要 — 目的:开颅手术是切除部分头骨,以便外科医生进入大脑并治疗肿瘤。进入大脑时,组织会发生变形,并可能对手术结果产生负面影响。在这项工作中,我们提出了一种新颖的增强现实神经外科系统,将从 MRI 获得的术前 3D 网格叠加到手术期间获得的大脑表面视图上。方法:我们的方法使用皮质血管作为主要特征来驱动刚性和非刚性 3D/2D 配准。我们首先使用特征提取器网络来生成概率图,并将其输入到姿势估计器网络以推断 6-DoF 刚性姿势。然后,为了解释大脑变形,我们添加了一个非刚性细化步骤,该步骤使用基于物理的约束将其表述为形状模板问题,有助于将变形传播到皮质下水平并更新肿瘤位置。结果:我们在 6 个临床数据集上回顾性地测试了我们的方法,并获得了较低的姿势误差,并使用合成数据集表明可以在皮质和皮质下水平实现相当大的脑移位补偿和较低的 TRE。结论:结果表明,我们的解决方案实现了低于实际临床误差的准确度,证明了我们的系统在实际应用中的可行性。意义:这项工作表明,我们可以使用单个摄像机视图提供通过开颅手术观察到的 3D 皮质血管的连贯增强现实可视化,并且皮质血管为执行刚性和非刚性配准提供了强大的功能。
级联的单阶段分布放大器(CSSDA)由于其显着的增益带宽产品而有助于微波应用实现超宽带扩增。但是,它们的功能通常会因内部噪声而损害,这会对响应的线性产生有害。通过引入准差分分布式放大器(QDDA)提出了对这个普遍问题的创新解决方案。实施0.18μm互补的金属氧化物半导体(CMOS)技术,设计,制造和测试了具有单级四级级联配置的QDDA。经验结果表明,高增益为20dB,并且具有30GHz的带宽。此外,观察到噪声图为4.809,紧凑的芯片尺寸为0.74mm²。使用高级设计系统(ADS)RF模拟器完成了此设计和结果发现。随后使用Cadence工具生成电路布局和规格。这项研究证明了QDDA显着提高CSSDA的性能的潜力,这有助于进步超宽带微波炉应用。
在医学成像中,表面配准被广泛用于对解剖结构进行系统比较,一个典型的例子是高度复杂的大脑皮层表面。为了获得有意义的配准,一种常见的方法是识别表面上的突出特征,并在它们之间建立低失真映射,将特征对应关系编码为界标约束。之前的配准工作主要集中在使用手动标记的界标和解决高度非线性的优化问题,这非常耗时,因此阻碍了实际应用。在这项工作中,我们提出了一种使用准共形几何和卷积神经网络自动检测和配准大脑皮层表面界标的新框架。我们首先开发了一个界标检测网络 (LD-Net),该网络允许根据表面几何形状在给定两个规定的起点和终点的情况下自动提取界标曲线。然后,我们利用检测到的界标和准共形理论实现表面配准。具体来说,我们开发了一个系数预测网络 (CP-Net),用于预测与所需基于地标的配准相关的 Beltrami 系数,以及一个名为磁盘 Beltrami 求解器网络 (DBS-Net) 的映射网络,用于从预测的 Beltrami 系数生成准共形映射,其中双射性由准共形理论保证。实验结果证明了我们提出的框架的有效性。总之,我们的工作为基于表面的形态测量和医学形状分析开辟了新途径。
电气是一类不寻常的材料,其中间质阴离子电子(IAES)被捕获在带正电荷的晶格框架的有序腔中。与调用离子晶体相反,在电气中,仅由晶体中的原子轨道引起的占用能带(BRS)的占用能带的组合不应分解,但必要性应包括以电气位置为中心的准原子轨道的BR。1,限制在阴离子空位位置的此类电子的波函数表现出独特的双重性,结合了由动能与库仑相互作用之间的竞争引起的强烈定位和空间范围。这种竞争导致实现了复杂的多体基础状态。在某些情况下,原子和间质电子子系统之间的耦合非常弱,以至于可以单独考虑后者,从而为纯量子电子系统中现象的实现和研究创造了一个显着的平台。2,3,这种治疗
研究背景 本研究之前的证据 我们在 PubMed 上搜索了有关 COVID-19 疫苗接种对死亡风险的“现实世界”有效性的研究,使用术语包括“COVID-19”、“疫苗有效性”、“死亡率”和“死亡”。 关于这个主题的相关已发表研究报告,疫苗有效性估计值对死亡风险的范围从 64.2% 到 98.7%,在接种疫苗后的不同时间内不等。 所有这些都是观察性研究,因此可能受到未测量的混杂因素造成的偏差。 我们发现没有研究使用不连续回归设计等准实验方法(不受未测量的混杂因素偏差的影响)来计算 COVID-19 疫苗接种对 COVID-19 死亡风险或住院或感染等其他结果的有效性。 本研究的附加价值 基于观察数据对疫苗有效性的估计可能会因未测量的混杂因素而产生偏差。本研究采用不连续回归设计来估计疫苗有效性,利用了英国的疫苗接种运动是按照年龄优先群体开展的这一事实。这使得能够计算出 COVID-19 疫苗对抗死亡风险有效性的无偏估计值。疫苗有效性估计值为 70.5%(95% CI 18.2 – 117.7),与之前公布的估计值相似,因此表明这些估计值没有受到未测量的混杂因素的显著影响,并证实了 COVID-19 疫苗对抗 COVID-19 死亡风险的有效性。所有现有证据的含义获得 COVID-19 疫苗有效性的无偏估计对于制定解除 COVID-19 相关措施的政策至关重要。不连续回归设计提供了信心,即现有的观察性研究估计值不太可能受到未测量的混杂因素的显著影响。
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。