摘要 各行业光电设备的特性以及降低成本的目标追求要求光电系统具有高可靠性。在这方面,可以通过可靠性分配问题来解决可靠性改进。必须提高子系统的可靠性,以确保符合设计人员的意见,满足要求以及定义的必要功能。本研究试图通过最大化系统可靠性和最小化成本来开发一个多目标模型,以研究设计阶段成本以及生产阶段成本。为了研究设计阶段可靠性改进的可行性,使用系统中有效的可行性因素,并将 sigma 水平指数纳入生产阶段作为可靠性改进难度因素。因此,考虑了子系统可靠性改进的优先级。通过设计结构矩阵研究子系统依赖程度,并将其与修正的关键性一起纳入模型的局限性中。通过目标规划将主模型转化为单目标模型。该模型在光电系统上实现,并对结果进行了分析。在该方法中,可靠性分配分为两个步骤。首先,根据分配权重确定子系统的可靠性范围。然后,根据子系统可靠性改进的成本和优先级启动改进。
1微生物学和感染控制部,Vrije Universiteit Brussel(VUB),大学医院布鲁塞尔大学(UZ Brussels)(UZ Brussels),1090年,布鲁塞尔,比利时2号布鲁塞尔2号制药科学系,实体或体外毒理学,体外毒理学(BISI),布鲁塞尔大学免费大学(VUB),Laarbeeklaan 103,1090 Brussels,比利时4号布鲁塞尔4号,安特卫普大学生物科学工程系(UA),2020年安特斯特普,比利时5布鲁斯尔5布鲁塞尔IVF,大学医院Brussels(UZ Brussels) (vub),laarbeeklaan 103,1090布鲁塞尔,比利时 *通信:thomas.demuyser@uzbrussel.be
•高级制造(M)•高级材料(AM)•可伸缩分析的高级系统(AA)•农业技术(AG)•人工智能(AI)•增强虚拟和混合现实(AV/VR/MR)(AV/VR/MR)•生物技术(BT)•生物医学技术(BM)•CYCERIANCE(BM)•CENLICATION•CRECTIISS(CT)(CT)(CT)(CT)(CT)•contriction•clind Frinction•clind Frinctive•clind Frinctive•clodfitive•clod Finfition•clind Frinctions•clind Frin可 Authentication (CA) • Digital Health (DH) • Distributed Ledger (DL) • Energy Technologies (EN) • Environmental Technologies (ET) • Human-Computer Interaction (HC) • Instrumentation and Hardware Systems (IH) • Internet of Things (I) • Learning and Cognition Technologies (LC) • Medical Devices (MD) • Mobility (MO) • Nanotechnology (N) • Other Topics (OT) •药品技术(PT)•光子学(pH)•电源管理(PM)•量子信息技术(QT)•机器人(R)•半导体(S)•Space(SP)•无线技术(W)
Renaissance/HXI是最高质量RF,微波和毫米波组件和子系统的交钥匙提供商。我们为汽车,电信,航空航天,空间和国防应用的集成被动和主动组件提供设计,工程功能和定制解决方案。文艺复兴时期/HXI是AS9100质量标准认证公司,所有产品均在ITAR Conlolled设施中设计和制造。组件功能和应用程序:
新的商业开发项目应使用符合 2006 年版 NFPA 1 表 H 的消防栓进行保护。要查看表 H,请访问:(http:///www.nashfire.org/prev/tableH51.htm) 项目工程师需要与消防局办公室会面讨论此项目。任何建筑物的任何部分都不得通过硬面道路距离消防栓超过 500 英尺。地铁条例 095-1541 第 1568.020B 节。所有消防部门通道的宽度不得小于 20 英尺,且垂直净空高度不得超过 13.6 英尺。所有长度超过 150 英尺的死胡同都需要直径为 100 英尺的转弯处,这包括临时转弯处。持续时间不超过一年的临时 T 型转弯处必须得到消防局办公室的批准。如果地面以上三层以上,则应安装 1 级立管系统。如果地面以下一层以上,则应安装 1 级立管系统。当需要将桥梁用作消防部门通道的一部分时,应根据国家认可的标准建造和维护桥梁。应在消防部门连接处 100 英尺范围内提供消防栓。在将任何可燃材料带入现场之前,应先将消防栓投入使用。
• 每个光学元件有亚百万到数百万个毛细管通道 • 每个通道都与同一点(焦点)对齐 • 焦点位于光学元件的输入侧和输出侧 • 光学元件提供较大的收集角度,从而产生高输出 X 射线通量 • 多毛细管光学元件不是成像光学元件 • 焦点尺寸小至 5 微米 • 提供的通量密度比针孔高出五个数量级
13。报告类型和期间涵盖的最终报告(2019年7月 - 4月2021)14。赞助代理代码15。补充注释16。摘要在美国中西部州的中西部州略微固结的冰川耕种和风化的页岩通常在施工后表现出很大的强度退化。这种降低的强度通常会导致路边依赖时间的斜率故障。这项研究研究了应用基于生物聚合物的土壤修饰技术来减轻这些土壤的强度降低现象的可能性。在这项研究中,通过实验室测试评估了几种不同的生物聚合物,选择了两种生物聚合物进行广泛的风化测试,然后将较高表现的生物聚合物Xanthan应用于内布拉斯加州Verdigre的测试坡度,并用重型仪器进行。以下是结果的摘要。分别混合0.5%,1.5%和2.5%的黄原胶,从绿色的天空它们的不受欢迎的实验室剪切强度提高了20%,30%和40%。另一方面,在8个湿冻冻干干燥的周期中,风化的天鹅绒的风化剪切强度仍保留了未经治疗的未知无关的牙龈的83%。对于冰川耕种也获得了类似的结果,表明基于黄金的聚合方法可以用作一种新的生态友好方法,以增强中西部州风化的页岩和冰川耕种的强度。但是,需要进一步监视以充分验证发现。迄今为止,基于压力表和叶片剪切测试结果,施用的黄曼处理的土壤与实验室测试结果相似。
图 1 hiPSC-NSC 的生成和核型分析。A、在 Matrigel 上生长的 R-iPSC4-hiPSC 菌落。B、用胶原酶 IV 消化 hiPSC 后形成的胚状体 (EB)。C、用 TGF β 抑制剂 SB421543 和 BMP 抑制剂 dorsomorphin 处理的 EB 接种到聚-l-鸟氨酸和层粘连蛋白包被的板上后 7-10 天出现玫瑰花结状结构。D、通过解离玫瑰花结状结构并接种到聚-l-鸟氨酸和层粘连蛋白包被的板上获得神经外胚层细胞。E、F、这些细胞表达 NSC 标记物 Nestin (E) 并在分化第 30 天分化为表达微管相关蛋白 2 (MAP2) 的神经元 (F)。细胞核用 Hoechst 33342 (蓝色) 染色。比例尺:100 µ m。G、H、基于全基因组 SNP 阵列的 hiPSC-NSC 核型分析。针对位于该区域的阵列上所有 SNP,绘制了每条染色体的 B 等位基因频率(上图)和 log 2 R 比率(下图)。每个点都是一个 SNP。虽然第 10 代(p10)的细胞没有显示任何主要核型异常(G),但 p16 的 hiPSC-NSC 表现出 1 号染色体整个长臂的重复,dup(1)q(H)
中端:运行 IBM AS/400 平台的服务器,包括硬件、软件、人工和支持服务 融合基础设施:专用设备,在一个机箱中提供计算、存储和网络功能 大型机:运行旧操作系统的传统大型计算机和操作 高性能计算 (HPC):用于通过大量并发使用计算资源和并行处理技术来解决复杂的计算问题。技术应用于科学和工业研究、产品工程和开发以及复杂的业务建模、模拟和分析等领域。HPC 硬件和软件技术专门针对大规模并行计算和处理大量数据进行了优化
图 6-3a。用于验证 IRIG 时间码准确性的基于 PC 的测试设置。...................................... 6-12 图 7-1。单个 CAIS 总线配置。......................................................................... 7-2 图 7-2。分离 CAIS 总线配置。......................................................................... 7-2 图 7-3。配置检查流程图 (1/2)。............................................................. 7-4 图 7-4。配置检查流程图 (2 / 2)。......................................................... 7-5 图 B-1。热瞬态测试设备。............................................................................. B-2 图 B-2。底座。................................................................................................................ B-3 图 B-3。传感器固定装置支架。................................................................................ B-4 图 B-4。传感器固定装置(黄铜)。................................................................................ B-5 图 B-5。玻璃固定环。............................................................................................. B-6 图 B-6。传感器安装插头。............................................................................................. B-7 图 B-7。闪光灯滑块。............................................................................................. B-8 图 B-8。灯架(大)。......................................................................................... B-9 图 B-9。灯架(小)。.................................................................................... B-10 图 B-10。使用开槽旋转盘和相当于测量应用的热源对传感器进行瞬态热冲击测试的测试设置。.................... B-15 图 C-1。发射器 RF 包络。................................................................................. C-1 图 C-2。晶体探测器输出。.................................................................................... C-1 图 C-3。幅度调制。......................................................................................... C-2 图 D-1。测量值和计算值。...................................................................... D-2 图 E-1。GUI 控制窗口。......................................................................................... E-6 图 E-2。文件浏览器窗口。...................................................................................... E-6 图 E-3。对话框:载波跟踪滤波器。.................................................................... E-7 图 E-4。对话框:符号跟踪滤波器。.................................................................. E-8 图 E-5。外部/接收器/眼图。外部、离散时间散点图。................................................................ E-10 图 E-6。................................................................. E-10 图 E-7。循环同步进度。......................................................................... E-10 图 E-8。表格分析摘要。............................................................................. E-11 图 E-9。图形分析控制窗口。......................................................................... E-11 图 E-10。假锁定眼图。.................................................................................... E-13 图 E-11。假锁定星座。................................................................................. E-13 图 E-12。数据采集设备。................................................................................ E-16 图 F-1。分析仪结构。.............................................................................................. F-3 图 F-2。参考功率谱。......................................................................................... F-4 图 F-3。星座图。............................................................................................. F-5 图 F-4。检测滤波器。......................................................................................... F-6 图 F-5。发射机测试设备。.......................... F-13 图 F-7。................................................................................ F-6 图 F-6。参考信号的比特间隔载波相位轨迹。发射机性能摘要。................................................................ F-15 图 F-8。使用差分编码预测的检测性能。.......................... F-15 图 F-9。基带频谱。................................................................................ F-16 图 F-10。在发射机 RF 端口测量的 OQPSK 星座。................................. F-16 图 F-11。决策样本直方图。................................................................................ F-17 图 F-12。在发射机 RF 端口测量的 OQPSK 星座。................................. F-17 图 F-13。箱间隔相位轨迹。......................................................................... F-18 图 F-14。轨迹偏差频谱。.............................................................................. F-19