安全限制约束是绝对最大额定值表中指定的绝对最大结温。安装在应用硬件中的设备的功耗和结到空气热阻决定了结温。热特性表中假定的结到空气热阻是安装在 JESD51-3、引线表面贴装封装低有效热导率测试板中的设备的结到空气热阻,是保守的。功率是建议的最大输入电压乘以电流。结温是环境温度加上功率乘以结到空气热阻。
神经形态处理系统使用混合信号模拟/数字电子电路和/或忆阻设备实现脉冲神经网络,代表了一种有前途的技术,适用于需要低功耗、低延迟且由于缺乏连接或出于隐私考虑而无法连接到云进行离线处理的边缘计算应用。然而,这些电路通常噪声大且不精确,因为它们受设备间差异的影响,并且工作电流极小。因此,按照这种方法实现可靠的计算和高精度仍然是一个悬而未决的挑战,一方面阻碍了进展,另一方面限制了这项技术的广泛采用。从构造上讲,这些硬件处理系统具有许多生物学上合理的约束,例如参数的异质性和非负性。越来越多的证据表明,将这些约束应用于人工神经网络(包括用于人工智能的神经网络),可以提高学习的稳健性并提高其可靠性。在这里,我们深入研究神经科学,并提出网络级大脑启发策略,进一步提高这些神经形态系统的可靠性和稳健性:我们通过芯片测量来量化群体平均在多大程度上有效地减少神经反应的变化,我们通过实验证明皮质模型的神经编码策略如何允许硅神经元产生可靠的信号表示,并展示如何利用这些策略稳健地实现基本计算原语,如选择性放大、信号恢复、工作记忆和关系网络。我们认为,这些策略可以有助于指导使用噪声和不精确的计算基板(如亚阈值神经形态电路和新兴的记忆技术)实现的稳健可靠的超低功耗电子神经处理系统的设计。
摘要:忆阻器件由于结构简单、集成度高、功耗低、运行速度快等特点,在存储器、逻辑、神经网络和传感应用中备受关注。特别是,由有源门控制的多端结构能够并行处理和操纵信息,这无疑将为神经形态系统提供新概念。通过这种方式,可以设计基于晶体管的突触器件,其中突触后膜中的突触权重被编码在源漏通道中,并由突触前终端(门)修改。在这项工作中,我们展示了强关联金属氧化物中可逆场诱导金属-绝缘体转变 (MIT) 的潜力,可用于设计坚固而灵活的多端忆阻晶体管类器件。我们研究了在 YBa 2 Cu 3 O 7 − δ 薄膜上图案化的不同结构,这些结构能够显示栅极可调的非挥发性体积 MIT,由系统内的场诱导氧扩散驱动。这些材料的关键优势是不仅可以在受限的细丝或界面中均匀调整氧扩散,就像在广泛探索的二元和复合氧化物中观察到的那样,而且可以在整个材料体积中均匀调整。与基于导电细丝的器件相比,关联氧化物的另一个重要优势是显著减少了循环间和器件间的差异。在这项工作中,我们展示了几种器件配置,其中漏极-源极通道(突触权重)之间的横向传导由主动栅极可调体积电阻变化有效控制,从而为设计稳健且灵活的基于晶体管的人工突触提供了基础。
1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000 (1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 美国能源部 (DOE) 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学和技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
盐水合物中的热阻和传质阻力是设计过程中面临的最大挑战。盐水合物颗粒和耦合介质之间的高热阻和潜在接触不良会导致盐未被利用(非活性储存)。因此,求解二维热阻和传质方程可实现更有效的设计,例如矩形通道和圆形翅片管几何形状,便于制造和定制。
在当今的计算机技术中,降低功耗是一项日益艰巨的挑战。传统的计算架构受到所谓的冯·诺依曼瓶颈 (VNB) 的影响,即需要在内存和处理单元之间不断交换数据和指令,从而导致大量且似乎不可避免的功耗。即使是通常用于运行人工智能 (AI) 算法(例如深度神经网络 (DNN))的硬件也受到此限制的影响。为了满足对超低功耗、自主和智能系统日益增长的需求,必须改变范式。从这个角度来看,新兴的忆阻非易失性存储器被认为是引领这项技术向下一代硬件平台过渡的良好候选者,它使在同一位置存储和处理信息成为可能,从而绕过 VNB。为了评估当前公共可用设备的状态,本文对商用级封装的自导通道忆阻器进行了彻底研究,以评估其在内存计算框架中的性能。具体而言,确定了允许突触权重的模拟更新和稳定的二进制切换的操作条件以及相关问题。为此,设计并实现了基于 FPGA 控制平台的专用但原型的系统。然后,利用它充分表征创新智能 IMPLY(SIMPLY)逻辑内存(LiM)计算框架的功耗性能,该框架允许可靠地在内存中计算经典布尔运算。将这些结果投影到纳秒范围可以估算出这种计算范式的真正潜力。虽然本文没有进行研究,但所提出的平台也可用于测试基于忆阻器的 SNN 和二值化 DNN(即 BNN),它们可与 LiM 结合以提供异构灵活架构,这是无处不在的 AI 的长期目标。
2 泰国微电子中心(TMEC)、国家电子和计算机技术中心、国家科学技术发展局、Chachoengsao 24000,泰国电子邮件:a s6209091960016@email.kmutnb.ac.th,b,* ekachai.j@tggs.kmutnb.ac.th(通讯作者),c hwanjit.rattanasonti@nectec.or.th,d putapon.pengpad@nectec.or.th,e karoon.saejok@nectec.or.th,f chana.leepattarapongpan@nectec.or.th,g ekalak.chaowicharat@nectec.or.th,h wutthinan.jeamsaksiri@nectec.or.th 摘要。本文针对低压工作范围提出了一种改进的微机电系统 (MEMS) 压阻式压力传感器设计,该传感器由花瓣边缘、横梁、半岛、三个横梁和一个中心凸台组合而成,以提高传感器性能,即灵敏度和线性度。利用有限元法 (FEM) 预测 MEMS 压阻式压力传感器在 1-5 kPa 施加压力下的应力和挠度。利用幂律制定纵向应力、横向应力和挠度的函数形式,然后将其用于优化所提设计的几何形状。仿真结果表明,所提设计能够产生高达 34 mV/kPa 的高灵敏度,同时具有 0.11% 满量程 (FSS) 的低非线性。半岛、三个横梁和中心凸台的设计降低了非线性误差。通过增加花瓣边缘宽度可以提高灵敏度。还将所提设计的传感器性能与文献中先前的设计进行了比较。比较结果表明,所提设计的性能优于先前的设计。关键词:MEMS、压阻式压力传感器、有限元法、灵敏度、线性度。
太阳能灶是一种利用太阳能加热食物以进行烹饪的设备。太阳能烹饪可用于减少传统燃料的使用并提高食物质量。太阳能灶必须处理通过吸收板金属部件和食物容器接触的高浓度热流。对于热传递,接触热阻起着重要作用,降低接触点的热阻是主要关注点。在目前的研究中,通过结合接触电阻对轻质、节能的箱式太阳能灶进行了数学建模。开发了一种实验装置来找出接触热阻,并评估了铝材料表面粗糙度为 0.2 Ra 和 0.8 Ra 时的接触热阻。对灶具进行了性能测试以获得性能系数 F 1 和 F 2 。此外,还对表面粗糙度为 0.8 和 0.2 Ra 的测得的热接触阻进行了负载测试。对于 0.2 Ra 的表面粗糙度,考虑接头处热阻时观察到的 % 误差分别为 19.77%、13.69%、13.68%,不考虑接头处热阻时观察到的 % 误差分别为 −42.89%、18.95% 和 16.37%。对于 0.8 Ra 的表面粗糙度,考虑接头处热阻时观察到的偏差分别为 23.09%、17.52%、13.5%,不考虑接头处热阻时观察到的偏差分别为 −42.89%、18.95% 和 16.37%。计算得出的品质因数 F 1 为 0.12,而商用炊具的品质因数为 0.11,这表明新设计的炊具具有更高的光学效率。计算得出的品质因数 F 2 为 0.42,而商用炊具的品质因数为 0.38。因此,结果强调了热接触阻非常重要,在建模时应予以考虑。
1)与发作相关的延长(<500/μL10天或更长时间)2)血液学恶性肿瘤肿瘤3)同种异体造血细胞移植4)4)泼尼松等于3周的0.3 mg/kg,在60天内均为60天的30天hime himse tosem 6) (钙调神经酶抑制剂,TNF-α抑制剂,亚曲酶,嘌呤类似物等)施用历史记录7)急性GVHD III-IV(肠道,肺,肺,肝脏,肝脏,肝脏,肝脏)丝状真菌感染的宿主因子8肉芽肿病,STAT3缺乏,严重的联合免疫缺陷)念珠菌病的宿主因素10)先天性严重免疫缺陷(慢性肉芽肿,STAT3缺乏症,Card9缺乏症,STAT1功能增益,严重的合并免疫缺陷)