•世界是量子,我们很幸运,任何适合古典计算机的东西 - 大型量子计算机可以在HEP中处理计算,否则无法访问 - 这打开了新的边界并扩展了LHC,LIGO,LIGO,EIC和DUNE
摘要 - 人的手指通过结合刚度不同的结构(从软组织(低)到肌腱和软骨(中)到骨骼(高),实现了异常的灵巧性和适应性。本文探讨了开发具有相似多态性特征的机器人手指。具体来说,我们建议使用通过体素大小和单位细胞几何形状参数的晶格配置,以优化并实现具有高粒度的精细调谐刚度。这种方法的一个重要优势是在单个过程中打印设计的可行性,消除了对刚度不同的元素的手动组装的需求。基于这种方法,我们提出了一种新颖的人类手指和一个软抓手。我们将后者与刚性操纵器集成在一起,并证明了挑选和放置任务的有效性。
晶格量规理论是强烈相互作用的非亚洲田地的必不可少的工具,例如量子染色体动力学中的晶格结果几十年来一直至关重要的量子染色体动力学。最近的研究表明,量子计算机可以以戏剧性的方式扩展晶格仪理论的范围,但是尚未探索量子退火硬件对晶格量规理论的有用性。在这项工作中,我们对量子退火器实施了SU(2)纯仪表理论,该量子将连续几个带有周期性边界条件的晶格。这些斑点属于两个空间维度,计算使用了不离散时间的哈密顿公式。数值结果是从D-Wave Advantage硬件的计算中获得的,特征值,真空期望值和时间演变。此初始探索的成功表明,量子退火器可能会成为晶格理论某些方面的有用硬件平台。
这项工作综述了文献,并提供了一维银和金纳米颗粒的光学特性的详细计算分析,重点是表面晶格共振(SLR),这些共振(SLR)在本地化的等离激子共振(LSPRS)中跨越纳米颗粒的跨度跨度时,它们会在nanopartiles中跨度散布,以使某些散布的跨度散布,以使某些跨度的跨度散布在跨度上,以使某些相互构想的跨度散布在跨度上。激发类型连贯耦合。组合基于偶联偶极近似,该偶极近似提供了几乎定量的描述这种类型的阵列的灭绝光谱,其中颗粒良好分离而不太大。这些计算用于确定与下极化模式相关的SLR的许多特征,该模式大多是光子本质上的,我们还研究了由LSPR响应所支配的上极性体,以及瑞利异常(RAS),以及对纯粹衍射激发的贡献。计算探讨了这些激发对入射波和极化向量相对于阵列轴的方向的敏感性,阵列间距和阵列中颗粒数的影响以及纳米颗粒半径和背景折射指标的效果。提供了确定蓝色和/或红色移位的物理机制的细节,因为提供了变化的结构参数,SLR对远场耦合很敏感,而LSPR在某些情况下也可能对近中间和中间田间相互作用敏感,在某些情况下与在Dye Molecule Molecule Cotregate中发现的效果相似。
图S14。具有周期性边界条件(PBC)的拟定计算域。(a)顶视图和(b)由𝜃 twist的顶部MOS 2层,中间摩西2层和底部AU基板组成的异质结构系统的前视图。(c)表示内部键的表示,该键证明了双层系统中所构建的Moiré模式。moiré单位单元在(a)中以白色标记,在(c)中为红色。请注意,高𝜃双层构型导致小尺寸的Moiré周期性,𝐷。
摘要二维原子晶体(2DAC)和范德华异质结构(VDWH)启发了一种无键的方法,用于构建除传统外观外观方法以外的异质结构。本演讲始于对范德华(VDW)相互作用的早期探索,以将不同的材料与原始电子界面整合在一起。我将重点关注我们最近在合成和探索各种各样的VDW超级晶格(VDWSL)家族方面的进步,该家族由2DACS的交替层和具有可自定义的化学化学组合物和结构基序的自组装分子层组成。i将强调这些分子中间层如何定制2DAC的电子和光学特性,并特别强调手性分子互晶的超晶格超晶格,这些超晶格超晶格表现出强大的手性诱导的自旋选择性和吸引人的手性超导性。使用多功能分子设计和模块化装配策略,2D分子VDWSL为量身定制电子,光学和量子性能提供了无限的机会,为新兴技术创建了丰富的平台。
被困在光场中的超冷碱土原子是丰富的物理系统,是量子信息处理 [ 1 – 4 ]、多体哈密顿量的量子模拟 [ 5 – 9 ] 和量子计量 [ 10 – 14 ] 的有吸引力的候选者。在每种情况下,同时询问许多原子都有助于提高测量精度,但也会产生高原子密度,并且有可能在具有多个原子的晶格位置发生原子间碰撞。对于量子信息和模拟,这些相互作用可能是一个关键特征;然而,对于量子计量,它们带来了不受欢迎的复杂性。例如,碰撞会导致原子钟中密度相关的频率偏移。在所有情况下,都需要很好地理解和控制这些相互作用。为了限制晶格钟中的相互作用,提出了使用超冷自旋极化费米子来利用 s 波碰撞的费米抑制,同时冻结更高的分波贡献。这种费米抑制源于量子统计,它规定相同的费米子粒子只能通过奇数分波碰撞。然而,在费米子 87 Sr(I ¼ 9 = 2)[ 11 , 15 , 16 ] 和 171 Yb(I ¼ 1 = 2)[ 12 ] 中测量到了微小的碰撞偏移,这可能会损害晶格钟的最终精度。我们发现,对于 87 Sr,即使最初无法区分的费米子,s 波碰撞也可能发生 [ 15 , 17 – 19 ]。这些碰撞之所以能够发生,是因为轻原子相互作用引入了一定程度的不均匀性,使费米子变得略微可区分。相比之下,使用 171 Yb,我们在此强调了 p 波碰撞在费米子晶格时钟系统中可以发挥的重要作用。在量子统计的帮助下,我们通过以最先进的精度进行测量以及定量理论模型,展示了 Yb 晶格时钟中冷碰撞的完整图像。此外,我们展示了消除碰撞偏移的新技术,可用于大大降低时钟不确定性。为了简化涉及许多晶格陷阱两级原子相互作用碰撞的复杂系统
超短光信号的全部表征,包括它们的相和相干性能,对于对新型工程光源的发展和理解,例如光学频率梳,11-13个频率编码量子态,14和光学孤子分子至关重要。15此外,完全的光信号表征对于通过光纤网络16和波长划分传输格式的传播信息的通信很重要,在该格式中,单个载流子之间的相对阶段很重要。17用于测量光脉冲,频率分辨的光门控(Frog)18的最常用的甲基OD和用于直接电场重建(蜘蛛)的光谱相干涉测量法(Spider),11,19需要复杂的多模板光学设置,以便重建相干性的振幅和程度。具有仅具有单个空间模式的光谱相信息能力的能力。这包括超快速信号转换方法,例如
两片石墨烯以扭曲的方式堆叠在一起,形成一个系统,该系统最近引起了人们的极大兴趣,因为它具有令人着迷的电子特性,这些特性通常出现在由此产生的莫尔超晶格的尺度上,而莫尔超晶格通常比石墨烯晶格常数大 10 到 100 倍。特别是对于小的扭曲角度,莫尔超晶格常数在 10-20 纳米范围内,这使得扫描探针显微镜 (SPM) 成为研究扭曲双层系统的理想工具。通过本应用说明,我们展示了具有纳米级横向分辨率的 attoAFM I 低温显微镜如何配备先进的 AFM 模式,如导电尖端原子力显微镜 (ct-AFM) 和压电响应力显微镜 (PFM),可用于探索扭曲双层的电气和机电特性。
基于身份的加密(IBE)是公共密钥加密的概括,其中公钥可以是任意字符串,例如名称,电话数字或电子邮件地址。用户的秘密密钥只能由可信赖的机构(称为密钥生成中心(KGC))生成,该键将其主秘密密钥应用于用户自身身份验证后用户的身份。Shamir [34]提出了IBE的概念,以简化公共密钥和证书管理。自Boneh和Franklin [10]提出的首次意识到,在过去的二十年中,进行了重大研究[1、7、7、8、12、17、18、21、22、25、36、37],从不同假设中构建了各种IBE方案。最近,为了预言量子计算机的攻击,量词后加密术,尤其是基于晶格的密码学,成为流行的研究方向。在此过程中,我们专注于基于晶格的ibe。