引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
摘要:使用 I5N 示踪技术测量了 6 个欧洲潮汐河口(莱茵河、斯凯尔特河、卢瓦尔河、吉伦特河和杜罗河)的氨和硝酸盐吸收量。氨和硝酸盐的吸收率分别为 0.005 至 1.56 pmol N 1-' hI 和 0.00025 至 0.25 pmol N 1-' hI,且在河口之间和河口内部存在显著差异。使用相对优先指数 (RPI) 分析氮吸收量表明,氨是首选底物。颗粒氮的周转时间(0.7 至 31 天)和溶解氨的周转时间(0.1 至 27 天)与河口水停留时间相似或更短,而溶解硝酸盐的周转时间(19 至 2160 天)比停留时间长。因此,河口水柱中硝酸盐的同化不会影响其分布,除非发生显著的反硝化作用和/或埋藏在沉积物中,否则河口中大部分硝酸盐都会被冲走。由于铵和颗粒氮被有效地再循环,大多数外来有机物在输出、埋藏或被更高营养级消耗之前都经过了广泛的微生物改性。
摘要 随着电动汽车的普及和无线电子设备的扩展,对二次电池的需求正在迅速增长。 然而,使用最广泛的锂离子电池经常发生火灾事件,限制了市场的增长。 为了避免易燃性,基于固体电解质的系统在下一代锂离子电池中越来越受到关注。 然而,离子电导率的限制和高制造成本等挑战需要进一步的研究和开发。 在本研究中,我们旨在确定一种尚未得到广泛探索的新型氮基固体电解质材料。 我们提出了一种通过高通量筛选(HTS)选择最终材料的方法,详细说明了用于材料选择和性能评估的方法。 此外,我们展示了氮取代材料与碳和氧置换的从头算分子动力学(AIMD)计算和结果,包括阿伦尼乌斯图、活化能和锂离子电导率最高的材料在 300K 下的预测电导率。虽然性能尚未超越传统固态电解质的离子电导率和活性,但我们的结果为探索和筛选新型固态电解质材料提供了系统框架。该方法也可以应用于探索不同的电池材料,并有望为下一代储能技术的创新做出重大贡献。
是由此动机,引起了人们对新2D半导体进行光催化水分裂的关注。对于完全光催化的水分裂,2D半导体应具有合适的带边缘对准,以满足光催化水分裂的带结构需求,包括带隙大于1.23 eV,并相对于v h + vh + vh +较高的势值(vbm)和最小值(cbm),并导致距离较高(CBM)(CBM)。 v oh - /o 2 = - 5.67 eV)。7 - 10此外,要考虑pH值范围为0到14,2D半导体光催化剂的带隙应大于2.0 eV,以确保光催化水分的还原反应。11 - 14此外,足够大的过电势和强大的可见光光吸收对于确保足够的驱动能量和相对较高的太阳能转化效率也至关重要。基于上述,全面的2D
过量的氮对明尼苏达州的地表水和地下水以及其他管辖区的下游水域都是有害的。虽然据估计,明尼苏达州的废水部门向明尼苏达州地表水排放的总氮 (TN) 不到 10%,但废水处理厂可能会向单个水体排放大量的硝酸盐和氨氮,特别是在没有太多其他来源或流量低的情况下。这项废水氮减排和实施战略 (战略) 是由 MPCA 与利益相关者协商制定的,旨在实现废水部门保护和恢复明尼苏达州和下游水体所需的氮减排。废水氮减排是明尼苏达州营养物减排战略 (NRS) 的一个组成部分,该战略还涉及非点源。
人类对自然的经验对我们的文化,经济和健康至关重要。良心驱动的气候变化正在引起生物多样性的广泛转变,而居民城市野生动植物也不例外。我们对超过2,000种动物物种进行了建模,以预测环境变化将如何影响60个加拿大和美国城市内的陆地野生动植物。我们发现了即将发生的大城市变化的证据,其中成千上万的物种将在选定的城市中消失,被新物种取代,或者根本没有取代。效应在很大程度上是特定于物种的,最负面影响的分类单元是两栖动物,犬和懒惰。在温室气体排放的情况下,这些预测的转变是一致的,但是我们的结果表明,变化的严重性将由我们的行动或无所作为来减轻气候变化。即将发生的城市野生动植物的大规模转变将影响人类居民的文化经历,生态系统服务的提供以及我们与自然的关系。
在2024年1月21日收到的文章于201/02/2024修订的文章在2010年1月3日接受了文章,简介Azotobacterspecies是革兰氏阴性含量为革兰氏阴性含量,免费生活,有氧,非亲生氮固定细菌可增加土壤的生育能力。Lohnis和Smith(1923)描述了具有复杂生命周期的氮杂杆菌。纯培养中氮杂杆菌的形态差异很大。它是钝性的杆状或大约2x4µ的椭圆形细胞(Winogradsky,1930; 1938)。称为囊肿的静息细胞是球形,圆形和代谢性休眠的(Hitchins and Sadoff,1970; 1973)。已经报道了Azotobacter属的六种物种,其中一些是通过钙鞭毛蛋白鞭毛的运动,而其他鞭毛则是非运动的(Martyniuk and Martyniuk,2003年)。Azotobacter属在1901年被荷兰微生物学家,植物学家和环境微生物学 - 贝吉林克及其同事的创始人认可。关于作物生产中氮杂杆菌的研究表明,其在改善植物营养和改善土壤生育能力方面的重要性(Kurrey等,2018)。在补充了各种碳和氮来源的培养基中生长的几种氮杂杆菌菌株可以产生氨基酸(Gonzalez-Lopez等,2005)。这些根瘤菌产生的这种物质与几种
发布日期:2019年12月12日 |接受日期:2020年7月29日 |出版日期:2021 年 10 月 12 日 Andrea Carolina Pabón-Beltrán 哥伦比亚桑坦德工业大学 Orcid:0000-0003-3877-7678 Felipe Sanabria-Martínez 哥伦比亚材料科学与技术研究人员基金会:dio Vásquez 哥伦比亚桑坦德工业大学 Orcid:0000-0001-6563-0044 José José Barba-Ortega 哥伦比亚哥伦比亚国立大学 哥伦比亚材料科学与技术研究人员基金会 西班牙材料、应用和纳米结构中心 哥伦比亚材料科学与技术研究人员基金会 Orcid:0000-0003-4154-7179 * 研究文章 通讯作者。电子邮件:foristom@gmail.com DOI:https://doi.org/10.11144/Javerina.iued25.scpt