NCKF的研究和数据旨在支持向气候弹性转变的转变,例如适应和缓解气候变化。我们对气候研究的广泛理解,其中还包括运营方面。通过监视,建模和分析,我们进行了有影响力的研究和发展,以提供与长期气候方案有关的权威科学知识和数据,以计划和决策以及为社会安全和安全的运营需求提供数据。在这方面,NCKF支持DMI根据当地影响的研究,远程感知的观察,预测和预测提供更好的天气,海洋和海冰警告,以支持决策和为危险事件做准备。
•预计2024年至2028年之间每年的全球平均近表面温度预计将比1850-1900年的平均水平高1.1°C至1.9°C。•可能(80%的机会),在2024年至2028年之间,全球平均平均近表面温度将超过1850-1900的平均水平1.5°C。五年平均值将超过此阈值大约不是(47%)。•2024年至2028年之间至少一年可能比记录中最温暖的一年(目前2023年)要温暖一年。2024年至2028年的五年平均机会比最近五年(2019-2023)高(90%)。•2023-24厄尔尼诺尼诺已经达到顶峰,并且很可能在2024年过渡到LaNiña。•相对于1991 - 2020年期间的平均水平,在接下来的五个延长冬季(11月至3月)的北极变暖预计将大于全球平均温度的变暖大三倍。•相对于1991 - 2020年平均值,预测2024年的降水模式表明,巴西东北部降雨的机会增加增加,而非洲萨赫勒(Sahel)的潮湿条件的机会增加,这与北大西洋地区的较温暖的温度一致。•7月至9月季节的苏达诺 - 撒哈利亚人(Presass)地区可能会看到2024-2028的平均降雨量,尽管个人季节可能并非如此。•2024 - 2028年5月至9月的北大西洋预测条件表明,热带气旋活性高于平均水平。•2024 - 2028年3月的海冰预测表明,巴伦支海,白令海和俄克拉斯大海的海冰浓度进一步降低。
国防部的《气候风险分析》报告得出结论,这些变化可能会产生气候危害,如海冰或冰川消融、海平面上升、洪水、干旱、极端高温、野火和热带气旋。这些危害中的每一个都会对国际安全产生影响。例如,干旱可能导致供水不足并对农业生产产生不利影响。这可能会加剧受影响地区对自然资源的竞争或冲突。洪水可能会破坏关键基础设施并使人口流离失所,进而导致大规模移民或政治危机。国防部指出,这些危害可能会“[重塑]地缘战略、作战和战术环境,对美国国家安全和国防产生重大影响。”
地方和国家政府以及民间部门和教育机构越来越多地使用 AMS 中运行的系统和网络,用于宽带机载数据链路以支持遥感应用,例如地球科学、土地管理和能源分配。这些应用的示例包括,例如监测北极海冰厚度和分布、地方和国家执法、森林火灾测绘、管道监测、农业和城市土地使用以及自然资源调查)。遥感设备可以安装在载人飞机或无人航空系统 (UAS) 上。如果遥感设备安装在 UAS 上,则 AMS 中运行的系统和网络可用于窄带机载指挥和控制数据链路。这些窄带数据链路可用于指挥和控制遥感设备和 UAS 之一或两者。
气候变化的轨迹” NSFAGS-2235177,C。Deser(NCAR)和G. Persad(Austin U. Texas),Co-Pis,2/23-1/25,$ 985K($ 173K to Ncar)。出版物(按时间顺序分顺序)224。Deser,C.,A。S. Phillips,M。A. Alexander,D。J. Amaya,A。Capotondi,M。G. Jacox和J. D. Scott,2024年:海洋热和冷浪的强度和持续时间的未来变化:来自耦合模型模型初始条件大型合奏的见解。J.气候,37,1877-1902,doi:10.1175/jcli-d-23-0278.1。223。Hwang,Y。T.,S。-P。 Xie,P。-J。 Chen,H. -y。 Tseng和C. Deser,2024年:人为气溶胶在21世纪初期对LaNiña的持续状态的贡献。proc。natl。学院。SCI。 U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。222。Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。adv。,10,EADK8646(2024)。doi:10.1126/sciadv.adk8646。221。Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。地球。res。Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。Lett。,在印刷中。220。Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。攀登。dyn。,正在审查。219。J.218。Gervais,M。L. Sun和C. Deser,2024年:预计的北极海冰损失对北美日常天气模式的影响。气候,37,1065–1085,https://doi.org/10.1175/jcli- D-23-0389.1。Zhang,X。和C. Deser,2023年:自1949年以来观察到的南大洋变暖和冷却趋势的热带和南极海冰影响。NPJ攀登。 Atmos。 SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。NPJ攀登。Atmos。SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。SCI。,正在审查。217。Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。J.气候,正在审查中。216。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y.-o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。J.气候,正在审查中。
摘要:以前的研究之间存在一个基本鸿沟,得出的结论是,没有海冰,并且发现极性扩增是独立于海冰的大气的固有特征。我们假设,气候海洋热传输的表示是模拟无冰气候中极性放大的关键。为了调查这一点,我们在CESM2-CAM6的平板海洋水膜片配置中运行了一系列有针对性的实验,并具有不同的开处方海热传输的填充物,这些海洋热传输是在CO 2 Quadrupling下不变的。在没有气候海热传输的模拟中,不会发生极性放大。相比之下,在气候海洋热传输的模拟中,在所有季节中都会发生强大的极性放大。是什么导致了对海洋热传输的这种依赖性?能量平衡模型理论无法解释我们的结果,实际上会预测,引入海洋热传输会导致极性扩展。相反,我们证明了短波云辐射反馈可以解释CESM2-CAM6模拟的不同极性气候响应。在零海洋热传输模拟中进行的针对云锁定实验能够重现气候海洋热传输模拟的极地放大,仅通过规定高纬度云辐射反馈。除了核对以前的差异外,这些结果还对在高排放场景下解释过去的平等气候和气候预测具有重要意义。我们得出的结论是,无冰气候中的极性扩展是由海洋 - 大气耦合的基础,这是通过较小的高纬度短波短波云辐射反馈,从而促进了增强的极性变暖。
北极 [1] 和南极 [2] 的海冰迅速收缩、亚马逊森林 [3] 和澳大利亚 [4] 的丛林大火、大气中 CO2 浓度超过 400 ppm、海水酸度、海平面和全球温度持续上升 [5],这些都迫切需要解决气候变化问题。可再生能源、清洁能源转换、能源储存、核能、碳捕获和封存、用电动汽车替代内燃机汽车以及可持续建筑设计是应对气候变化的现有解决方案的一部分。根据国际可再生能源机构 (IRENA) [6] 提供的 2019 年数据,太阳能(94GW;比 2017 年增长 24%)和风能(49GW;比 2017 年增长 10%)是 2018 年安装的两大主要可再生能源容量。
与全球平均水平相比,北极扩增(AA)北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。 然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。 在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。 令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。 这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。 我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。
摘要:古气候代理揭示了在过去的冰川间隔中被称为Dansgaard - Oeschger(DO)事件的北大西洋气候的突然过渡。DO事件的主要特征是在绿地中突然变暖,标志着相对温和的相对阶段,称为间质。这些表现出数百至几千年的逐渐冷却,直到最终的降低使温度恢复到冷场水平。到目前为止,这种千禧一代可变性背后的确切机制仍然没有定论。在这里,我们提出了一个令人兴奋的模型来解释Dansgaard - Oeschger Cycles,该模型以噪声诱导的状态空间偏移而发生,在该模型中。我们的模型包括代表北极大气温度,北欧海洋温度和海冰覆盖的四个动态变量之间的相互尺度相互作用,以及大西洋子午线翻转循环。该模型的大气 - 海洋热量由海冰主持,这又受到快速发展的间歇性噪声动态产生的大型扰动。如果超临界,扰动触发了类似的状态空间段游览,在此期间,所有四个模型变量都经历了定性变化,而定性变化始终类似于相应的代理重新质量中的星座的特征。作为一个产生噪声的物理间歇过程,我们提出了海洋或大气阻塞事件中的对流事件。我们的模型准确地重现了DO循环形状,返回时间以及间质和体积持续时间对背景条件的依赖性。与普遍的理解可变性是基于基础动力学的双态性的相反,我们表明,多尺度,单稳定的兴奋动态为解释与事件相关的千禧年气候变化提供了一种有希望的替代方案。