概述 1 查找项目 2 各省特定数据库 3 阿尔伯塔省 3 萨斯喀彻温省 4 马尼托巴省 4 西北地区 4 爱德华王子岛省 4 安大略省 4 新斯科舍省 5 新不伦瑞克省 5 纽芬兰和拉布拉多省 5 育空地区 6 不列颠哥伦比亚省 6 魁北克省 7 附加地图图层 7 电池储能 7 本土可再生能源 9 太阳能潜力 10 主要发现总结 10 参考文献 12
在这里报告了一组扩展的替代吡啶与d -x分子(d = x,cn)形成的复合物中x n(x = i,br)卤素键的详细研究。通过Bader的分子中的原子量子理论(QTAIM)和Penda的相互作用量子原子(IQA)方案,已经在不同的(MP2和DFT)理论水平上研究了这些相互作用的性质。吡啶环上的取代基和卤素键特征上的卤代残基。我们发现,交换相关能量代表了对IQA总能量的实质性贡献,在某些情况下,与(I 2个复合物)甚至是dominited(ICN复合物)相当。有意义的信息是由源函数提供的,表明X N相互作用的键临界点对电子密度的主要贡献是从卤素原子得出的,而氮原子的贡献要低得多,该氮原子充当电子密度的源或源。从远端原子的相关贡献(包括吡啶环不同位置的各种电子支持和吸引电子取代基)也被确定,突出了电子密度的非局部特征。已经检查了结合能,根据IQA的相互作用能量和QTAIM描述符(例如DELECALIZERIAD指数和源函数)之间可能存在的关系。通常,只有在直接涉及的卤素和氮原子外部环境中,才能发现良好的相关性,在相互作用中起较小的作用。
自从发现 [1,2] 以来,EEG 已越来越多地应用于基础研究、临床研究和工业研究。针对每个领域,都陆续开发出了特定的工具。这些工具包括:(i) 利用微电极进行脑内记录 [3,4],该方法可以识别 EEG 信号的神经元来源,并更好地理解 EEG 活动的生理机制;(ii) 大平均法,包括由重复事件 (视觉、听觉、体感……) 触发的一系列试验的平均值 [5],该方法开启了诱发相关电位 (ERP) 领域的研究,最近包括 EEG 源发生器 [8–10] 在内的 EEG 动力学工具 [6,7] 丰富了这一研究领域; (iii) 将 EEG 用于神经反馈和脑机接口 (BCI) [ 11 , 12 ]。过去,这些领域及其相关工具是分开发展的,但计算资源和实验数据的日益普及推动了横向方法和方法论桥梁的发展。视觉诱发电位 (VEP) 是一种特殊的 ERP,从枕叶皮质记录的 EEG 信号中提取,可由不同类型的视觉刺激触发,从简单(如棋盘格)[ 13 ,第 14 页,15 ] 到更复杂的视觉刺激(如人脸、3D 或运动图像)[ 14 , 16 – 20 ]。VEP 是通过计算大量正在进行的 EEG 信号试验的总平均值获得的(见公式 1),从而产生精心设计且易于识别的电位,随后可用于更好地理解视觉输入的连续处理阶段。然而,这些诱发反应来自至少两种不同的机制,分别源自加法模型或振荡模型 [8, 21 – 24]。对于加法模型,诱发反应来自对感觉输入的自下而上的连续处理。这会产生特定序列的单相诱发成分峰,这些峰最初嵌入自发 EEG 背景中。后者 EEG 活动被视为噪声,并通过随后的平均排除。对于振荡模型,诱发电位可能是由于特定频带内正在进行的 EEG 节律的相位锁定所致。这种 EEG 相位重组可以通过试验间一致性 (ITC) 来测量,作为对外部刺激的反应。从根本上讲,只有当相关 EEG 功率没有同时变化(增加或减少)时,这种测量才有意义。在这种情况下,我们处于纯相位锁定状态,诱发反应仅归因于正在进行的 EEG 振荡的重组。例如,体感诱发电位的 N30 分量就是这种情况,其中 70% 的幅度归因于纯相位锁定 [ 25 ]。事实上,在大多数 ERP 研究中,会出现混合情况(功率变化和相位锁定),这使得基础和临床解释变得困难。另一个缺点是,在大多数诱发电位研究中,对一组受试者进行的是总体平均值。虽然总体平均值方法可以得到适当的统计数据[26]和关于基本或临床结果的实际结论,但它掩盖了从临床角度来看可能至关重要的个体特性。当诊断工具基于总体平均值诱发电位[27]时,这个问题尤其重要。同样,对总体平均值数据应用逆建模[10,28]可以非常有效地识别ERP发生器[19,29-31],但不利于确定个体特征。面对这些缺点,
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。