美国国会图书馆出版品目数据 古代与历史金属:保护与科学研究:保罗·盖蒂博物馆与盖蒂保护研究所组织的研讨会论文集,1991 年 11 月 / David A. Scott、Jerry Podany、Brian B. Considine 编辑。页码。包括参考书目。ISBN 0-89236-231-6(平装本)1.艺术金属制品——保护与修复——会议。I. Scott,David A. II.Podany,Jerry.III.Considine,Brian B. IV.J. Paul Getty 博物馆。V. Getty 保护研究所。VI.标题:古代和历史金属。NK6404.5.A53 1995 730’.028—dc20 92‑28095 CIP 已尽一切努力联系本书中照片和插图的版权持有人,以获得出版许可。如果以书面形式联系出版商,任何遗漏将在未来的版本中得到纠正。
1. Ganguly, A. 、Roychowdhury, S. 和 Gupta, A. (2024)。粒子外部驱动和自泳推进的统一流动性表达式。流体力学杂志,994,A2。[链接] 2. Ganguly, A. 、Alessio, BM 和 Gupta, A. (2023),扩散泳动:一种新颖的传输机制 - 基础、应用和未来机遇。Front. Sens. 4:1322906。[链接] 3. Ganguly, A. 和 Gupta, A. (2023)。绕圈:自推进弯曲杆的细长体分析。 Physical Review Fluids,8(1),014103。[链接] 4. Ganguly, A. ∗ 、Bairagya, P. ∗ 、Banerjee, T. 和 Kundu, D. (2022)。自然启发算法与广义 Pitzer‐Debye‐Hückel (PDH) 细化在环状二醚体系液-液平衡 (LLE) 相关性中的应用。AIChE 杂志,68(2),e17434。[链接]
Guselkumab (Tremfya ® ) 重要提醒 我们制定医疗政策是为了向会员和医疗服务提供者提供指导。本医疗政策仅与其中描述的服务或供应有关。医疗政策的存在并非医疗政策中提及的服务(或供应)的授权、证明、福利说明或合同。为确定会员有权根据其健康计划获得的福利,必须审查会员的健康计划。如果医疗政策与健康计划或政府计划(例如 TennCare)之间存在冲突,则以健康计划或政府计划的明示条款为准。政策适应症 以下适应症(包括 FDA 批准的适应症和药典用途)被视为承保福利,前提是满足所有批准标准并且会员没有排除处方治疗。FDA 批准的适应症
2023 年 3 月 7 日 作者:参谋军士Braden Anderson 第 374 空运联队公共事务 在全国阅读推广日之际,第 374 空运联队的指挥官和其他管理人员最近为横田空军基地的儿童保育设施 Yume 儿童发展中心揭幕。孩子们。 这个周年纪念日是由国家教育协会于1998年设立的,是一个向孩子们传达阅读乐趣的日子。之所以选择3月2日,是因为这是图画书作者苏斯博士的生日。 横田图书馆一直参与国防部福利服务管理局的暑期阅读计划,该计划旨在鼓励年轻人在暑假期间养成阅读的习惯。允许日本员工使用图书馆。
我们的全球伙伴关系还延伸到太空,美国和日本在探索太阳系和重返月球方面处于领先地位。我们欢迎今天签署关于加压月球车探索月球表面的实施安排。根据协议,日本将提供并维护一辆加压月球车,而美国则计划在未来的阿尔特弥斯任务中为日本宇航员分配两次登月机会。两位领导人宣布了一个共同目标,即在满足关键基准的情况下,日本宇航员将成为在未来的阿尔忒弥斯 (Artemis) 任务中首位登陆月球的非美国公民。为实现这一目标,美国和日本计划深化在宇航员培训方面的合作,同时管理此类富有挑战性和启发性的月球任务带来的风险。我们还宣布在高超音速滑翔飞行器(HGV)和其他导弹的低地球轨道(LEO)搜索和跟踪星座方面开展双边合作,包括与美国工业界的潜在合作。美日联合领导人声明 面向未来的全球合作伙伴 开拓太空新领域 我们的全球伙伴关系延伸到太空,美国和日本正在引领探索太阳系和重返月球的道路。今天,我们欢迎签署月球表面探索实施协议,根据该协议,日本计划提供并维持加压月球车的运行,而美国计划在未来的阿尔特弥斯任务中为日本分配两次宇航员登月机会。 两国领导人宣布了一个共同目标,即假设实现重要基准,日本国民将成为未来阿尔特弥斯任务中第一位登陆月球的非美国宇航员。美国和日本计划深化宇航员培训方面的合作,以促进这一目标的实现,同时管理这些具有挑战性和鼓舞人心的月球表面任务的风险。 我们还宣布在低地球轨道探测和跟踪星座方面进行双边合作,用于高超音速滑翔飞行器等导弹,包括与美国工业界的潜在合作。
建立本尼乳杆菌作为鲁棒的生物效果使诸如靶蛋白 /引入酶的产品毒性和蛋白水解降解等问题变得复杂。在这里,我们研究了生物分子冷凝水是否可以用于解决这些问题。我们使用合成模块化支架的瞬时表达在N. benthamiana叶片中设计了生物分子冷凝物。所产生的冷凝物的体内特性与它们是具有多组分相分离系统的热力学特征的液体样物体一致。我们表明,将酶募集到体内冷凝物中导致单步代谢途径和三步代谢途径(柑橘酸盐生物合成和poly-3-羟基丁酸酯(PHB)生物合成)的倍数增加。这种增强的产量可能是出于多种原因,包括改善的酶动力学,代谢产物通道或避免通过在冷凝物内保留途径产物的细胞毒性,这证明了PHB的证明。但是,我们还观察到将其靶向冷凝水的酶累积的数量增加了几倍。这表明将酶定位于冷凝水时比在细胞质中自由扩散时更稳定。我们假设这种稳定性可能是增加途径产品生产的主要驱动力。我们的发现为利用植物代谢工程中的生物分子冷凝物的基础为基础,并推进了本泰米亚纳州,作为工业应用的多功能生物效果。
1 埃及索哈杰大学药学院微生物学与免疫学系,2 埃及米尼亚大学药学院微生物学与免疫学系,3 埃及米尼亚德拉亚大学药学院微生物学与免疫学系,4 埃及埃尔法塔赫艾斯尤特大学医学院医学微生物学与免疫学系,5 黎巴嫩贝鲁特黎巴嫩美国大学吉尔伯特与罗斯玛丽查古里医学院,6 埃及索哈杰大学药学院药理学与毒理学系,7 沙特阿拉伯麦加乌姆古拉大学药学院药物化学系,8 沙特阿拉伯麦加乌姆古拉大学药学院药剂学系
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。