摘要 - 聚噻吩和多吡咯是两个知名的导电聚合物,具有多种特性,并且在电子,传感器和能量存储等扇区中进行了多种潜在应用。本文进一步研究了聚噻吩和多吡咯的合成和分析。息肉吡咯和聚噻吩。分析这些聚合物所采用的方法包括光谱(UV-VIS,FTIR),热分析(TGA,DSC),显微镜(SEM,TEM)和电化学分析(环状伏安法)。研究了多吡咯和聚噻吩的几种特征,并与它们的电化学,热,形态和结构特性有关。我们还讨论了这些导电聚合物如何由于其表征所揭示的独特性能而在电气设备,传感器和能源存储系统中使用。聚噻吩和多吡咯烷现在可以在广泛的高科技应用中使用,因为它们的合成和特性是更众所周知的。
使用顺序渗透合成 (SIS) 将无机氧化物渗透到聚合物内部是一种有效的方法,可用于创建广泛应用的材料。各种聚合物官能团与有机金属/无机前体之间的反应是独一无二的,因此了解一系列前体和聚合物之间的特定相互作用对于实现预测性工艺设计和将 SIS 的效用扩展到应用至关重要。在本文中,在三种不同的均聚物中的 Al 2 O 3 和 TiO 2 SIS 期间进行了原位傅里叶变换红外光谱 (FTIR) 测量:聚甲基丙烯酸甲酯 (PMMA)、聚己内酯 (PCL) 和聚 2-乙烯基吡啶 (P2VP)。从前体暴露后和随后的吹扫时间内的 FTIR 强度变化可以定量表明,这些聚合物与金属前体的相互作用动力学以及中间复合物的稳定性存在很大差异。这项比较研究的一个重要发现是,尽管 PCL 的羰基 (C=O) 和酯基 (COR) 官能团与相互作用较弱的 PMMA 相似,但 PCL 与金属前体的相互作用要强得多。这种行为表明,除了官能团的特性之外,还有其他因素决定了聚合物与 SIS 中的金属化合物的相互作用方式。PCL 以前从未在 SIS 工艺中出现过,它可能是一种有吸引力的聚合物模板,可用于实现均匀性和成本效益更高的 SIS。
羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
AFFF aqueous film-forming foam APCD air pollution control device ARFF aircraft rescue firefighting BDL below detection limit BMP best management practice C Celsius CAA Clean Air Act CaF 2 calcium fluoride CaO calcium oxide Ca(OH) 2 calcium hydroxide C&D construction and demolition CDC Centers for Disease Control and Prevention CDR Chemical Data Reporting CEJST Climate and Economic Justice Screening Tool CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CF 4 carbon tetrafluoride C 2 F 6 hexafluoroethane C 3 F 8 octafluoropropane CFR Code of Federal Regulations CHES Clean Harbors Environmental Services CHF 3 fluoroform CIC combustion–ion chromatography CI/MS chemical ionization mass spectrometry CKD cement kiln dust DE destruction efficiency DoD Department of Defense DOE Department of Energy DRE destruction and removal efficiency ECHO Enforcement Compliance and History Online EJ environmental justice EPA United States Environmental Protection Agency ESP electrostatic precipitator ESTCP Environmental Security Technology Certification Program F Fahrenheit FAA Federal Aviation Administration FBC fluidized bed combustor FF fabric filter FML flexible membrane liner FTIR Fourier transform infrared spectrometry FTOH fluorotelomer alcohol FTS荧光素体磺酸200财年2020年NDAA国防授权法2020财政年度GAC颗粒活性碳GCCS煤气收集和控制系统HAP危险空气污染物
ACC 美国化学理事会 ADONA 4,8-二氧杂-3H-全氟壬酸铵的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 AF&PA 美国森林与造纸协会 AFFF 水性成膜泡沫 APFO 全氟辛酸铵(PFOA 的铵盐) ASTSWMO 州与地区固体废物管理官员协会 ATSDR 美国卫生与公众服务部,有毒物质与疾病登记署 BAF 生物累积因子 BCF 生物浓缩因子 CAFE 美国国家海洋与大气管理局化学品水生生物命运与影响数据库 CBI 机密商业信息 CDR 化学数据报告 CFR 联邦法规 CWA 清洁水法 DMR 排放监测报告 DOD 美国国防部 DONA 4,8-二氧杂-3H-全氟壬酸的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 DWTD 饮用水可处理性数据库 DWTP 饮用水处理工厂 ELG 废水排放限制指南和标准 EPA 美国环境保护署 EPA OPPT 美国环境保护署,化学品安全和污染防治办公室,污染防治和毒物办公室 ETFE 乙烯四氟乙烯 F-53B 氯化多氟烷基醚磺酸的商品名,包括 9Cl-PF3ONS(“F-53B 主”)、11Cl-PF3OUdS(“F-53B 次”)及其钾盐 FAA 美国部门
在我们的情况下,另一种副作用是延长的勃起。当我们查看文献时,我们没有发现由于使用氟毒素而导致的任何长时间勃起的病例。尽管与长时间勃起最相关的抗抑郁药是曲唑酮,但基本机制仍不清楚。曲唑酮被认为通过拮抗5-HT2A / 5-HT2C和α2肾上腺素能受体引起长时间的勃起和priapism(4)。氟氟众胺诱导的延长勃起可能与α受体阻滞有关。氟伏沙明与5-HT1A,5-HT2C的相互作用可以通过增加副交感神经的张力来帮助勃起,同时通过降低交感神经抑制射精(19)。在周围神经系统中,它可以通过减少交感神经排放和增加副交感神经的排放来延长勃起时间(19)。阴茎勃起被5-HT1B,5-HT1C,5-HT1D受体的刺激激活,而5-HT1A,5-HT2刺激抑制它(20)。
国防部 (DoD) 根据《综合环境反应、补偿和责任法案》(CERCLA) 和国防环境恢复计划 (DERP) 开展清理工作。我们的目标是以基于风险、财政健全的方式保护人类健康和环境。本备忘录根据美国环境保护署 (EPA) 的最新信息,为调查全氟辛烷磺酸盐 (PFOS)、全氟辛酸 (PFOA)、全氟丁烷磺酸 (PFBS)、全氟壬酸 (PFNA)、全氟己烷磺酸盐 (PFHxS) 和六氟环氧丙烷二聚酸 (HFPO-DA 或 GenX) 提供了明确的技术指导。本指导适用于调查由环境恢复账户资助、基地调整和关闭账户资助以及联邦空军和陆军警卫队运营和维护账户资助的场地的这些化学品。
众议院报告 116-445 第 29 页,附带 HR 7609《2021 年军事建设、退伍军人事务和相关机构拨款法案》,要求国防部环境部副助理部长向国会国防委员会提交季度报告,介绍国防部 (DoD) 在基地重新调整和关闭 (BRAC) 地点识别和修复全氟辛烷磺酸 (PFOS) 和全氟辛酸 (PFOA) 方面取得的进展,以及提高透明度的建议。此外,众议院报告 117-81 第 22 页,附带 HR 4355《2022 年军事建设、退伍军人事务和相关机构拨款法案》和 HR 2471《2022 年综合拨款法案》的联合解释性声明,要求国防部环境和能源恢复副助理部长为国会国防委员会准备一份综合报告,建立有关 BRAC 地点 PFOS/PFOA 的信息基线。本报告涵盖 2021 财年要求的所有剩余季度报告和 2022 财年报告语言中要求的有关已关闭军事设施中 PFOS/PFOA 的信息基线。具体而言,本报告包括 (1) 清理过程的背景;(2) 提高国防部清理过程透明度的建议;(3) 所有 BRAC 地点的列表;(4) 指示是否在饮用水和地下水中检测到 PFOS/PFOA; (5) 检测到的 PFOS/PFOA 水平;(6) 有关 PFOS/PFOA 可能来源的信息;(7) 对当前缓解措施和拟议补救计划的说明;(8) 补救状态;(9) 清理时间表;以及 (10) 对调查和清理 BRAC 地点全氟和多氟烷基物质 (PFAS) 的当前和未来成本的估计。