越来越多的文献报道了肽受体放射性核素治疗 (PRRT) 与其他抗肿瘤治疗的联合使用,以期产生协同效应,但可能增加安全性问题。增强 PRRT 结果的联合治疗基于改善肿瘤灌注、上调生长抑素受体 (SSTR)、使用 DNA 损伤剂进行放射增敏或靶向治疗。目前有几项 1 期或 2 期试验正在招募联合治疗方案的患者。PRRT 与细胞毒性化疗、卡培他滨和替莫唑胺 (CAPTEM) 的联合使用似乎具有临床应用价值,尤其是在胰腺神经内分泌肿瘤 (pNET) 中,且安全性可接受。目前正在进行的临床试验正在测试术前新辅助 PRRT、静脉和动脉内应用途径的 PRRT 组合、PRRT 与不同放射性标记(α、β、Auger)SSTR 靶向激动剂和拮抗剂的组合、免疫检查点抑制剂 (ICI)、聚(ADP-核糖)聚合酶-1 (PARP1i)、酪氨酸激酶 (TKI)、DNA 依赖性蛋白激酶、核苷酸还原酶或 DNA 甲基转移酶 (DMNT)。在罕见的 NET(如副神经节瘤、嗜铬细胞瘤)中与 [ 131 I]I-MIBG 的组合以及新的非 SSTR 靶向放射性配体用于个性化治疗过程。本综述将概述正在进行的 PRRT 联合治疗的现状。
通过评估内源性胰岛素分泌, C肽是β细胞功能越来越多地使用并确定的标记物。 在临床实践和研究中需要进行准确且可比较的C肽测量。 例如,为了计算HOMA-INDICES,C肽/葡萄糖比以及最近发表的糖尿病和前糖尿病前期新型亚组的分类,已经使用了C肽测量值。 尽管先进了C肽测量的标准化过程,但仍缺少其完整的实现;因此,使用不同免疫测定的C肽测量值的当前状态尚不清楚。 在这里我们比较了使用不同分析的五种广泛使用的C肽免疫测定(Abbott Alinity I,Diasorin联络XL,Roche Cobas E411,Siemens Helthineers Advia Centaur XPT和Immulite 2000 XPI),使用覆盖临床上相关C- Peptide Cpepide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide范围。 尽管所有研究的限制都可以追溯到C肽的国际参考试剂(NIBSC代码:84/510),但C肽测量结果显示了整个浓度范围内分析仪之间的显着差异,尤其是随着C-肽浓度的增加。 Roche和Siemens Healthineers(Advia Centaur XPT)的免疫测定结果之间的平均偏差最大(36.6%),并且两种测定法显示,与Abbott,Diasorin和Siemens Helthineers的免疫测定法相比,差异很大(Immulite 2000 XPI)。 相比之下,后一个测定法显示了类似的C肽恢复(平均偏差:2.3%至4.2%)。C肽是β细胞功能越来越多地使用并确定的标记物。在临床实践和研究中需要进行准确且可比较的C肽测量。例如,为了计算HOMA-INDICES,C肽/葡萄糖比以及最近发表的糖尿病和前糖尿病前期新型亚组的分类,已经使用了C肽测量值。尽管先进了C肽测量的标准化过程,但仍缺少其完整的实现;因此,使用不同免疫测定的C肽测量值的当前状态尚不清楚。在这里我们比较了使用不同分析的五种广泛使用的C肽免疫测定(Abbott Alinity I,Diasorin联络XL,Roche Cobas E411,Siemens Helthineers Advia Centaur XPT和Immulite 2000 XPI),使用覆盖临床上相关C- Peptide Cpepide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide Ceptide范围。尽管所有研究的限制都可以追溯到C肽的国际参考试剂(NIBSC代码:84/510),但C肽测量结果显示了整个浓度范围内分析仪之间的显着差异,尤其是随着C-肽浓度的增加。Roche和Siemens Healthineers(Advia Centaur XPT)的免疫测定结果之间的平均偏差最大(36.6%),并且两种测定法显示,与Abbott,Diasorin和Siemens Helthineers的免疫测定法相比,差异很大(Immulite 2000 XPI)。相比之下,后一个测定法显示了类似的C肽恢复(平均偏差:2.3%至4.2%)。因此,C肽差异可能会影响临床诊断和研究结果的解释。因此,迫切需要实施和最终确定C肽测量的标准化过程,以改善患者护理和研究的可比性。
由于缺乏明确且具有成本效益的治疗靶点,肝细胞癌 (HCC) 是世界上最危险的疾病之一。目前,传统化疗药物的毒性和多药耐药性的产生正在推动靶向治疗的研究。纳米生物医学领域开发有效的治疗性纳米药物输送系统的潜力被视为封装和释放多种抗癌疗法的重要制药趋势。在这方面,当前的研究集中在创建可生物降解的壳聚糖纳米颗粒 (CSNP),以选择性和持续释放蜂毒到肝癌细胞中。此外,用聚乙二醇 (PEG) 和 GE11 肽偶联的蜂毒-CSNP 进行表面改性可以靶向 EGFR 过表达的肝癌细胞。一系列体外和体内细胞分析被用于研究靶向蜂毒-CSNP 的抗肿瘤作用和机制。尤其是靶向蜂毒-CSNPs,研究发现其对 HepG2 细胞的细胞毒性比对 SMMC-7721 细胞的细胞毒性更高,细胞摄取更强,细胞迁移显著减少,从而改善癌症抑制。与天然蜂毒相比,它还通过增强活性氧、激活线粒体依赖性途径、抑制 EGFR 刺激的 MEK/ERK 途径和升高 p38-MAPK 来促进 EGFR 过表达 HepG2 细胞中的癌细胞死亡。在肝细胞癌 (HCC) 诱发的小鼠中,它对肿瘤组织具有抗癌特性。它还可以改善肝功能和结构,而不会引起任何明显的毒副作用,并通过激活凋亡途径抑制肿瘤生长。这种针对癌症的纳米粒子的设计确立了 GE11-蜂毒-CSNPs 作为 EGFR 过度表达恶性肿瘤的潜在化疗治疗方法。最后,我们的工作阐明了靶向蜂毒-CSNPs 抗癌选择性的分子机制,并概述了针对肝癌的治疗策略。
神经退行性疾病技术描述神经退行性疾病的标志之一是,突触与神经元之间的信息传播有关,在疾病进展过程中恶化。塔拉·特雷西(Tara Tracy)博士在巴克研究所(Buck Institute)的实验室确定了位于大脑突触的蛋白质,该蛋白质在此过程中发生了变化。该蛋白质称为kibra,称其为肾脏和大脑。证明了在阿尔茨海默氏病小鼠模型中恢复kibra的功能,恢复了老年小鼠的记忆,但雄鹿研究人员创建了合成的kibra肽,可以用作治疗记忆和认知能力下降的治疗方法。这些新型肽已经在小鼠陶氏病模型(发生在阿尔茨海默氏病以及其他神经退行性疾病)中进行了测试。我们的kibra肽能够恢复该小鼠模型中的记忆和可塑性,表明尽管存在有毒的tau蛋白,但突触恢复还是可能的。应用新型肽治疗剂用于治疗
法兰克福站点将增加1000 m 2的制造空间,其中包括两条配备的固定相肽合成器(SPPS),高压液相色谱(HPLC),液相(LP),隔离设备和质量控制实验室,包括过程控制(IPC),起始物料批次释放和GMP稳定性。GMP制造区域旨在为临床第1期和第2期要求生产从克到千克范围的肽API。随着项目沿客户生命周期的进行,新的最先进的技术将使人们能够平稳而无缝地转移到后期和商业制造场Cordenpharma Colorado(美国博尔德)。
Chih Hung Lo 1,#, * 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore 2 School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore 3 Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México 4 School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, México # 同等贡献 *通讯作者:Chih Hung Lo,博士 (chihhung.lo@ntu.edu.sg) Víctor M. Baizabal-Aguirre,博士 (victor.baizabal@umich.mx)关键词 TNFR1 信号传导,受体特异性抑制、构象动力学、非竞争性抑制、变构机制、药物发现、肽抑制剂、抗炎摘要肿瘤坏死因子 (TNF) 受体 1 (TNFR1) 在介导 TNF 诱导的信号通路和调节炎症反应中起关键作用。最近的研究表明,TNFR1 活化涉及配体前组装受体二聚体的构象重排,而靶向受体构象动力学是调节 TNFR1 信号的可行策略。在这里,我们结合使用生物物理、生化和细胞分析以及分子动力学模拟来表明抗炎肽 (FKCRRWQWRMKK)(我们称之为 FKC)通过改变受体二聚体的构象状态来变构抑制 TNFR1 活化,而不会阻断受体-配体相互作用或破坏受体二聚化。我们还通过展示该肽抑制 HEK293 细胞中的 TNFR1 信号传导并减轻腹膜内 TNF 注射小鼠的炎症来证明 FKC 的功效。从机制上讲,我们发现 FKC 与 TNFR1 富含半胱氨酸的结构域 (CRD2/3) 结合并扰乱受体激活所需的构象动力学。重要的是,FKC 增加了受体二聚体中 CRD2/3 和 CRD4 的开放频率,并诱导受体胞质区域的构象开放。这会导致抑制构象状态,阻碍下游信号分子的募集。总之,这些数据为靶向 TNFR1 构象活性区域的可行性提供了证据,并为受体特异性抑制 TNFR1 信号传导开辟了新途径。意义
Prime editing 是一种基于 CRISPR 的“搜索和替换”技术,可在没有双链断裂 (DSB) 或供体 DNA 模板 1 的情况下,在哺乳动物细胞中介导靶向 32 插入、删除和所有可能的碱基对碱基转换。Prime editing 34 酶 (PE2) 由与工程逆转录酶 (RT) 融合的 SpCas9 切口酶组成。35 PE2 通过 Prime editing 向导 RNA (pegRNA) 被招募到目标位点,该 RNA 除了标准基因组靶向间隔区和 SpCas9 结合发夹结构外,还包含 3' 序列,37 该序列充当融合 RT 的模板,以在一条切口 DNA 链上合成编程的 DNA 序列。当细胞 DNA 修复机制修复断裂的链时,这种 RT-39 延伸片段会与未编辑的片段竞争,而编辑后的序列有时会取代基因组中的原始序列 1,2。41
摘要:对纳米载体治疗效果和副作用的担忧导致了将其推进为靶向和响应性递送系统的策略的发展。由于其生物活性和生物相容性,肽在这些策略中起着关键作用,因此在纳米医学中得到了广泛的研究。特别是基于肽的纳米载体,随着纯肽结构以及天然和改性肽与聚合物、脂质和无机纳米颗粒的组合的进步而蓬勃发展。在这篇综述中,我们总结了肽促进基因递送系统的进展。核酸疗法的功效在很大程度上取决于细胞内化和向亚细胞器的递送。因此,这篇综述重点介绍了纳米载体,其中肽在将核酸运送到其作用位点方面起着关键作用,特别强调了帮助阴离子、水溶性核酸跨越它们在有效发挥作用的途中遇到的膜屏障的肽。在第二部分中,我们讨论了肽如何推进纳米组装递送工具,使得它们能够穿越递送障碍并以受控的方式在特定位置释放其核酸货物。
我们已经为包括MetaP2在内的几个肿瘤蛋白靶标生成了广泛的概念数据证明。现在,我们正在计算鉴定和优化涉及癌症疾病状态的其他重要蛋白质的破坏性肽。肽制剂被外包,随后的体外功效研究既有内部和外包。临床前研究确定动物模型中的疗效和毒理学,将在铅破坏性肽上进行,并认为为随后的首次试验生成全面的数据包。
肽类导向的 CdSe 纳米粒子组装 Madison Monahan a、Bin Cai b、Tengyue Jian b、Shuai Zhang b,c、Guomin Zhu b,c、Chun-Long Chen b,d、James De Yoreo a,b,c、Brandi M. Cossairt a * a 华盛顿大学化学系,Box 351700,华盛顿州西雅图 98195-1700。b 太平洋西北国家实验室物理科学部,华盛顿州里奇兰 99354。c 华盛顿大学材料科学与工程系,华盛顿州西雅图 98195-1700。d 华盛顿大学化学工程系,华盛顿州西雅图 98195。*cossairt@uw.edu 摘要。蛋白质的高信息含量驱动它们的层次化组装和复杂功能,包括无机纳米材料的组织。类肽提供了一种与蛋白质非常相似的有机支架,但溶解度范围更广,侧链和功能组易于调节,可创建具有原子精度的各种自组装结构。如果我们能够利用这种模式并了解控制它们如何引导无机材料成核和组装以设计此类材料内的秩序的因素,那么功能和基础科学的新维度就会出现。在这项工作中,类肽管和片被探索为组装胶体量子点 (QD) 和簇的平台。我们已成功合成了具有双官能化封端配体的 CdSe QD,该配体含有羧酸和硫醇基团,并将它们与含有马来酰亚胺的类肽混合,以通过共价键在类肽表面上创建 QD 组装。这种结合在类肽管、片和 CdSe QD 和簇中被视为成功。可以看出,这些粒子对类肽表面具有较高的偏好性,但与类肽上羧酸基团的非特异性相互作用限制了通过马来酰亚胺结合对 QD 密度的控制。用甲氧基醚替换羧酸基团允许控制 QD 密度作为马来酰亚胺浓度的函数。1 H NMR 分析表明,QD 与类肽的结合涉及通过羧酸盐官能团结合的一组表面配体,从而使硫通过共价键与马来酰亚胺结合。总体而言,我们已通过共价键展示了 CdSe-类肽相互作用的兼容性和控制,其中不同的类肽结构和 CdSe 粒子可产生复杂的混合结构。简介。