3.1.1.1. 聚烯烃 3.1.1.2. 聚偏二氟乙烯 3.1.1.3. 聚丙烯腈 3.1.1.4. 聚对苯二甲酸乙二醇酯 3.1.1.5. 聚酰亚胺 3.1.1.6. 聚芳醚酮 3.1.1.7. 聚四氟乙烯 3.1.1.8. 聚氨酯 3.1.1.9. 聚多巴胺 3.1.1.10. 聚甲基丙烯酸甲酯 3.1.1.11. 纤维素及其衍生物 3.1.1.12. 其他聚合物 3.1.2. 固体电解质
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
上午 9:30 – 上午 9:45:巴黎防区参谋长 Serge GARRIGUES 将军介绍性演讲“标准化与安全” 第 1 节:NOTSEG 项目 主持人:François MURGADELLA,副处长安全技术开发,国家保护和安全局,SGDSN 上午 9:45 – 上午 10:15:绘制社会和公民安全领域的工作和参与者,作者:AFNOR 开发经理 Jean-François LEGENDRE 上午 10:30 – 上午 11:00:休息 上午 11:00 – 上午 11:20 :国际标准化文本和参与者的分析:方法论和工具,作者:Brigitte JUANALS,HDR 信息科学讲师巴黎西南泰尔拉德芳斯大学 MoDyCo 实验室研究员和传播学研究员 Jean-Luc MINEL,巴黎西南泰尔拉德芳斯大学语言科学大学教授、MoDyCo 实验室(模型、动力学、语料库)主任-CNRS 上午 11:30 – 上午 11:50:弹性和业务连续性方面的合规性评估,作者:Jean-Marc PICARD,贡比涅工业大学教师研究员
(a)芳族卤素化合物:芳香族卤素化合物(双重分子位移,苯甲基机制)中的核和化学反应性,核和侧链卤素,核和侧链卤素化。环取代基在亲核取代中的作用。烷基,烯丙基,芳基,苄基和乙烯基卤化物对亲核取代的相对反应性。(b) Alcohols : Classification, method of preparation (hydration, hydroboration-oxidation and oxymercuration-reduction, reaction of alcohols, distinction between primary, secondary and tertiary alcohols (Victor Meyer's test, Lucas's test, Oxidation by K 2 Cr 2 O 7 and metallic Cu), preparation and chemical reactions of glycol (HNO 3 , HCl, PX 3 , terephthalic酸,氧化)和甘油(HNO 3,HI,草酸,KHSO 4)(c)环氧化物:环氧化物和与醇的反应,HCN,NH 3,Amines和Lialh 4。(d) Phenols : Nomenclature, Preparation (from benzene diazonium salts, benzene sulphonic acids and cumene), physical properties and acidic character, comparison of acid strength of phenols with alcohols, effect of substituents on acidity of phenols, chemical reactions: nitration, halogenation, sulphonation, Kolbe's reaction, Reimer-Tiemann reaction,苯酚 - 醛树脂。
摘要帕金森氏病(PD)是一种复杂的疾病,源于遗传和环境因素。目前的研究努力研究了暴露于有机氯(OCP)和有机磷酸盐农药(OPPS)的作用,被认为是主要环境因素,在PD的起源中。涉及29名PD患者和51名健康受试者。气相色谱法测量有机氯化学物质的血清水平(2,4-DDT,4,4-DDT,2,4-DDE,4,4-DDE,α-HCH,β-HCH,β-HCH和γ-HCH)。此外,评估了乙酰胆碱酯酶(ACHE)活性,副酶-1(PON-1)的芳基酶活性和几种氧化应激(OS)标记。PD患者的OCP水平明显高于对照组受试者。另外,PD患者的ACAE活性,PON-1的芳基酶活性,过氧化氢酶的活性和超氧化物歧化酶3活性明显小于对照组。然而,PD患者的羰基蛋白水平,总抗氧化能力,丙二醛和一氧化氮水平高于对照组。这项调查的结果表明,OCP和OPP暴露可能有助于帕金森氏病的发展。可以通过这些农药对神经系统的直接影响来建立这种潜在的联系,从而导致神经毒性,或者通过通过OS触发的间接途径来建立。
采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。
Mangifera Indica(MI)或芒果叶作为铜抑制剂已被研究。在乙醇溶剂中提取Mi,并以1 M HCl溶液中不同浓度的0、0.4、0.6和0.8 mg/ml制备,以模仿腐蚀性环境。由UV-VIS分光光度计分析的预先准备的MI提取器在约370 nm处显示肩峰,这是由芳族C = C = C = C = C = C = C = C = C = C = C = O)功能的N→π*电子过渡产生的。傅立叶变换红外光谱(FTIR)发现,MI提取物表现出芳族C = C,C = O酚类化合物,C-OH和C-O拉伸振动的组。电化学阻抗光谱(EIS)和TAFEL图分析评估了以0.6 mg/mL浓度达到的最佳腐蚀抑制铜。结果由腐蚀电位的正转移,e Corr,较低的腐蚀电流,i Corr和腐蚀速率(CR)分别为-0.233 V,4.39 µA/cm 2和0.05 mm/yr。使用冶金显微镜评估腐蚀测试后铜底物的表面形态显示出由于MI提取物的分子吸附而引起的巨大腐蚀抑制。
摘要:最近,发酵饮料中褪黑激素的存在与酒精发酵过程中的酵母代谢有关。褪黑激素最初被认为是脊椎动物的松果腺的独特产物,在广泛的无脊椎动物,植物,细菌和真菌中也被鉴定出来。这些发现带来了研究褪黑激素在酵母中的功能以及其合成的机制的挑战。但是,提高发酵饮料中这种有趣分子的选择和生产的必要信息是披露代谢途径中涉及的基因。到目前为止,仅提出了一个基因,该基因参与了酿酒酵母中的褪黑激素的产生,PAA1,一种多胺乙酰基转移酶,这是脊椎动物的Aralkylamine N-乙酰基转移酶(AANAT)的同源物。在这项研究中,我们使用不同的蛋白质表达平台评估了不同可能底物的生物转化,例如5-甲氧氨基胺,色氨酸和5-羟色胺,评估了PAA1的体内功能。此外,我们通过结合全局转录组分析和使用强大的生物信息学工具来预测S. cerevisiae中的Aanat的类似域,从而扩展了对新的N-乙酰基转移酶候选的搜索。候选基因的AANAT活性通过大肠杆菌中的过表达来验证,因为奇怪的是,该系统证明了比其自己宿主的酿酒酵母中的过表达更高的差异。我们的结果证实了PAA1具有乙酰化不同的芳基胺的能力,但AANAT活性似乎不是主要的乙酰化活性。我们还证明,PAA1P并不是这种AANAT活性的唯一酶。我们对新基因的搜索在酿酒酵母中检测到HPA2是一种新的芳基烷基胺N-乙酰基转移酶。这是第一个报告,清楚地证明了该酶参与AANAT活性。
• 贝叶斯叶片尖端定时 (BTT):Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • BTT 瞬时共振:Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • BBT 减少采样方法:Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • 环形热解装置(吸热装置和过程):Mike Heydenrych 教授(工程、建筑环境和 IT) • 粉煤灰基覆层瓷砖:Elsabé Kearsley 教授、Stuart Grant Hofmeyer(工程、建筑环境和 IT) • 海鸥配置:Reinhard Joachim Huyssen(工程、建筑环境和 IT) • 平面机制:Douw Gerbrand Marx(工程、建筑环境和 IT) • 电气保护系统及其方法:Patrick Manditerza、Ramesh Bansal 教授(工程、建筑环境和 IT)• 识别基因突变的方法和试剂盒:Michael Pepper 教授、Cheryl Stewart、Green Robin 和 Masekela Refiloe(健康科学)• Myrsine 皮肤护理:Namrita Lall 教授(自然和农业科学)• 芳香蜡菊的抗癌活性(芳香蜡菊提取物和成分可用于预防和治疗皮肤癌):Namrita Lall 教授和 Danielle Berrington(自然和农业科学)• 为什么要耐受压力:Don Cowan 教授和 Jasmin Mertens 博士(自然和农业科学)