1天然产物生物合成研究部,瑞肯可持续研究科学中心,瓦科,日本西塔玛,2,农业教职员工,塞特苏丹大学,日本大阪,日本大阪,3个学位课程,生命与地球科学学位课程研究科学,瓦科(Wako),日本西塔玛(Wako),日本5分子结构特征单元,瑞肯(Riken)可持续研究科学中心,瓦科(Wako),西塔玛(Saitama),日本,6化学资源开发研究部,瑞科可持续研究科学中心,瓦科(Wako),西塔玛(Wako),日本瓦科(Wako),日本7号生命科学学院,东京大学(Tokyo University of Compied of Prancied of Phassied of toky of toky of toky of toky of to of to of to wako农业,金代大学,奈良,奈良,日本,9,农业技术与创新研究所,金奈大学,奈良,奈良,纳拉,日本,10个生命科学生命科学中心,托苏库巴高级研究联盟(TARA),塔斯科巴大学,tsukuba大学,tsukuba,tsukuba,tsukuba,ibaraki,ibaraki
有机生物辣木液替代酸橙汁作为电能产生的电位和电流容量。在研究中使用新的标准电池蓄电池容器。本研究中使用的液体来自辣木叶,经过粉碎和过滤处理,添加酸橙汁和水。数据收集分别取自新鲜生物辣木和酸橙汁溶液。生物辣木和酸橙的电解质溶液用作电解质溶液。本文讨论的结果表明,生物辣木液替代酸橙汁能够通过添加水作为稀释剂将 pH 的酸度水平提高到 4。电流容量与该电解质溶液的酸度成反比,这意味着酸性越强(pH 值越小),溶液的电流越强,反之亦然,pH 值越大,溶液的电流值越小。使用前,用生物辣木液代替酸橙汁产生的电压显示,生物辣木液的最低电流量等于 5.44 伏,在通入充电器电流之前电流为 0.03 毫安。在电池蓄电池中,生物辣木电解液充电器充电 2 小时 30 分钟,最高电压为 11.64 伏,蓄电池中的存储电流为 2.5 安培。电池蓄电池中充满时的最大液体温度为 29.3 0 摄氏度,液体的比重为 1.27。使用 12 伏 270 毫安直流灯负载连接到装有生物辣木电解液的电池容器的测试结果最长可持续 2 小时 15 分钟。生物辣木电解液能够产生环保、无毒且由有机材料制成的电能,成为可再生和可持续的电能来源。
假单胞菌丁香和早期的土地植物谱系。Curr Biol 29:2270-2281。iChihara,I,Shiraishi,K,Sato,H等。 (1977)冠状动脉结构。 J AM Chem Soc 99:636-637。 Inagaki,H,Miyamoto,K,Ando,N等。 (2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。 前植物科学12:688565。 Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。iChihara,I,Shiraishi,K,Sato,H等。(1977)冠状动脉结构。J AM Chem Soc 99:636-637。Inagaki,H,Miyamoto,K,Ando,N等。 (2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。 前植物科学12:688565。 Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Inagaki,H,Miyamoto,K,Ando,N等。(2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。前植物科学12:688565。Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Katsir,L,Schilmiller,AL,Staswick,Pe等。(2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。Proc Natl Sci Acad USA 105:7100-7105。Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Koeduka,T,Ishizaki,K,Mwenda,CM等。(2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。Planta 242:1175-1186。
摘要:CO 2在耗尽的碳酸盐形成中的地下存储是限制其人为释放并最大程度地减少全球变暖的合适方法。岩石可湿性是控制CO 2捕获机制及其在地理储存形成中其遏制安全性的重要因素。地理储物岩包含先天有机酸,从而改变了岩石表面从亲水条件到疏水状态的润湿性,从而降低了CO 2存储能力。在这项研究中,通常将其释放到环境中的有毒染料的甲基橙色用作可湿性的修饰,以将硬脂酸老化方解石(油湿)的润湿性更改为湿。本研究使用接触角技术(无柄滴法)检查甲基橙(10-100 mg/l)对CO 2/盐水/盐水酸酸盐衰老的变性系统在地理储存条件下(即25和50°C的温度为5-20 mpa的压力)的润湿性的影响。结果表明,有机酸污染的岩石表面的前进和逐渐接触角(θa和θr)在暴露于甲基橙甲基时会大大降低,分别达到62°和58°的最小值,在20 mpa和50 mpa中的存在中,其含量为20 mpa和50°C。进入地下水库,以降低环境污染的水平,同时增加碳酸盐地层的CO 2存储能力。
与 2021 年 1 月相比,商品和服务总成本上涨了 4.1%。价格大幅上涨的主要类别包括运输,价格上涨了 16.2%,主要是由于燃料和润滑油成本上涨以及国际机票价格上涨。今年 1 月,汽油价格尤其大幅上涨,优质汽油的燃油泵价格从去年 1 月的每加仑 9.29 美元上涨到每加仑 12.18 美元,普通汽油从 9.33 美元上涨到 11.82 美元,柴油从 8.91 美元上涨到 10.71 美元。食品和非酒精饮料成本上涨了 2.5%,包括猪尾巴、植物油、酸橙、爱尔兰土豆以及最重要的鸡翅在内的几种食品的价格均上涨了 10% 以上。红芸豆、甜椒、卷心菜等一些商品的价格确实有所下降。
氯磺酸和油酸是使无序碳纳米管(CNT)转化为精确且高度功能的形态的理想溶剂。目前,使用挤出技术处理这些溶剂,由于化学兼容性而导致并发症,这限制了设备和底物材料选项。在这里,我们提出了一种新型的酸性溶剂系统,基于具有低腐蚀性的甲磺酸或p-硫苯磺酸,在浓度高达10 g/升(≈0.7体积%)时,它形成了CNT的真实溶液。该溶剂系统的多功能性是通过向常规制造过程(例如插槽模具涂层,溶液旋转连续纤维和3D打印气凝胶)进行的。通过连续的插槽涂层,我们在工业相关的生产速度下实现了最先进的光电性能(83.6%T和14 ohm/sq)。这项工作为CNT的可扩展处理中的实用和高效的手段建立了具有适合各种应用的属性的高级材料。
绿色抑制剂。但是,也有某些例外。例如,无机稀有元素(灯笼盐)成分具有低毒性和良好的生物降解性。然而,有机绿色腐蚀抑制剂的起源可以包括许多碱,例如离子液体,药物,植物提取物和合成抑制剂(图2)。具体来说,天然产品,例如植物(例如油及其衍生物)。因此,由于植物可用,可生物降解,可用于减少污染量,因此被认为是化合物的重要自然来源。此外,可以轻松提取植物,以低成本和生态系统的低污染。此外,它们可以在酸性溶液中发挥作用,因为它们具有多功能化学,物理和生物学特征。大多数绿色抑制剂可以在室温下通过物理和化学相互作用吸附到金属表面[33]。对环境影响低的腐蚀抑制剂在各种工程应用中为环境带来了重大的经济利益。植物通过将其作为腐蚀抑制剂重新利用,从而构成一个显着的环境挑战,从而减少了它们的整体环境影响。关于这些天然产品的非毒性,它们的应用对人类健康的危害仍然不那么危害。的确,提取方法和应用程序不会引入任何可能冒着人类健康风险的污染物或危险物质。因此,除了使用各种表征技术和电化学测试的有效性外,还必须评估其与工业应用的安全性和兼容性[34]。
摘要:针对癌细胞无法适应代谢应激这一问题,是传统癌症化疗的一种有前途的替代方法。FTY720(Gilenya)是一种经 FDA 批准用于治疗多发性硬化症的药物,最近有研究表明,它可通过下调必需营养转运蛋白来抑制癌症进展,从而选择性地饿死癌细胞。然而,FTY720 在给药时发生磷酸化时,可能会引发免疫抑制(淋巴细胞减少症)和心动过缓,因此禁止在临床上使用 FTY720 进行癌症治疗。通过酸可裂解的缩酮键,用聚乙二醇 (PEG) 封端其羟基,合成了一种前药,可特异性地防止循环过程中发生磷酸化,从而避免心动过缓和淋巴细胞减少症。聚乙二醇化还提高了水溶性。前药在细胞摄取后还原为完全有效的 FTY720,并在癌细胞中诱导代谢应激。已证实 FTY720 在弱酸性内体 pH 下释放增强,并且仅通过酸裂解药物即可显著下调白血病细胞中的细胞表面营养转运蛋白。重要的是,该前药在 BCR-Abl 驱动的白血病动物模型中表现出与 FTY720 几乎相同的功效,而不会在体内诱发心动过缓或淋巴细胞减少,突出了其潜在的临床价值。FTY720 的前药配方展示了通过解决特定分子机制来精确设计药物以避免不良影响的实用性,以及在经济上有利的新药开发替代方案。可以探索多种现有的癌症治疗剂的前药配方,以避免特定的副作用并保持或增强治疗效果。■ 简介