摘要:糖尿病性肾病(DN)是糖尿病中最常见的微血管并发症之一,可能会发展为终末期肾脏疾病。它的发病机理很复杂,尚未完全理解。足细胞,肾小球内皮细胞(GEC),肾小球肾小球细胞(GMC)和肾小管上皮细胞(TEC)在肾小球和肾小管的正常功能中起着重要作用,并且它们在DN的损伤中涉及其损害。尽管我们对导致DN的机制的理解大大提高,但我们仍然需要找到更有效的治疗靶标。自噬,凋亡和铁铁作用是与炎症有关的编程细胞死亡过程,并且与多种疾病密切相关。最近,越来越多的研究报告说,自噬,凋亡和铁凋亡调节足细胞,GEC,GMC和TEC的功能。本评论重点介绍了这些细胞中自噬,凋亡和铁凋亡对DN损伤的贡献,从而为DN治疗提供了潜在的治疗靶标。关键词:糖尿病性肾病,自噬,凋亡,肌t,炎症
三磷酸腺苷(ATP)输出以及葡萄糖,谷氨酰胺和脂肪酸的利用等之间的糖酵解和氧化磷酸化(OXPHOS)之间的动态变化,导致维持和选择对肿瘤细胞亚基的维持和选择在铁氧化环境中的生长优势。铁在自然界中的三个主要生物化学反应中起重要作用:光合作用,氮固定和氧化呼吸,所有这些都需要参与铁硫蛋白,诸如铁治再蛋白质,细胞色素B,以及复合物I,II,II,III,III,III中的Electron Electon Compranton Chain的Electer链中,这都需要参与铁氧化物硫蛋白。异常的铁硫簇合成过程或缺氧将直接影响线粒体电子转移和线粒体oxphos的功能。更多的研究结果表明,铁代谢,氧利用率和缺氧诱导因子相互调节糖酵解与OXPHOS之间的转移。在本文中,我们进行了综合综述,以提供有关肿瘤细胞中糖性和Oxphos调节的新见解。
1美国马里兰州医学院儿科,美国马里兰州21201; akowalski@som.umaryland.edu 2asociaciónpara la para la para ladevención y estudio del vih/sida,Retalhuleu 11001,危地马拉; valfonso@apevihs.org(v.a.m. ); shdepster@gmail.com(S.D.P.) 3美国马里兰州巴尔的摩市约翰·霍普金斯公共卫生学院国际卫生部,美国马里兰州21205; kaley.lambden@gmail.com(k.b.l.) 4美国马里兰州马里兰州医学院流行病学和公共卫生系,美国马里兰州21202; natilton@gmail.com 5美国俄亥俄州代顿市人类营养促进研究所,美国俄亥俄州45414; lisa@chispuditos.com(l.m.v. ); apalacios@georgiasouthern.edu(A.M.P. ); reinhart.greg@gmail.com(g.a.r。) 6 Jiann Ping HSU公共卫生学院,佐治亚州南部大学,乔治亚州州立大学,乔治亚州30458,美国7 RTI国际,研究三角公园,美国北卡罗来纳州27709,美国 *通信:mblack@som.umaryland.edu†这些作者对这项工作做出了同样的贡献。1美国马里兰州医学院儿科,美国马里兰州21201; akowalski@som.umaryland.edu 2asociaciónpara la para la para ladevención y estudio del vih/sida,Retalhuleu 11001,危地马拉; valfonso@apevihs.org(v.a.m.); shdepster@gmail.com(S.D.P.)3美国马里兰州巴尔的摩市约翰·霍普金斯公共卫生学院国际卫生部,美国马里兰州21205; kaley.lambden@gmail.com(k.b.l.) 4美国马里兰州马里兰州医学院流行病学和公共卫生系,美国马里兰州21202; natilton@gmail.com 5美国俄亥俄州代顿市人类营养促进研究所,美国俄亥俄州45414; lisa@chispuditos.com(l.m.v. ); apalacios@georgiasouthern.edu(A.M.P. ); reinhart.greg@gmail.com(g.a.r。) 6 Jiann Ping HSU公共卫生学院,佐治亚州南部大学,乔治亚州州立大学,乔治亚州30458,美国7 RTI国际,研究三角公园,美国北卡罗来纳州27709,美国 *通信:mblack@som.umaryland.edu†这些作者对这项工作做出了同样的贡献。3美国马里兰州巴尔的摩市约翰·霍普金斯公共卫生学院国际卫生部,美国马里兰州21205; kaley.lambden@gmail.com(k.b.l.)4美国马里兰州马里兰州医学院流行病学和公共卫生系,美国马里兰州21202; natilton@gmail.com 5美国俄亥俄州代顿市人类营养促进研究所,美国俄亥俄州45414; lisa@chispuditos.com(l.m.v. ); apalacios@georgiasouthern.edu(A.M.P. ); reinhart.greg@gmail.com(g.a.r。) 6 Jiann Ping HSU公共卫生学院,佐治亚州南部大学,乔治亚州州立大学,乔治亚州30458,美国7 RTI国际,研究三角公园,美国北卡罗来纳州27709,美国 *通信:mblack@som.umaryland.edu†这些作者对这项工作做出了同样的贡献。4美国马里兰州马里兰州医学院流行病学和公共卫生系,美国马里兰州21202; natilton@gmail.com 5美国俄亥俄州代顿市人类营养促进研究所,美国俄亥俄州45414; lisa@chispuditos.com(l.m.v.); apalacios@georgiasouthern.edu(A.M.P.); reinhart.greg@gmail.com(g.a.r。)6 Jiann Ping HSU公共卫生学院,佐治亚州南部大学,乔治亚州州立大学,乔治亚州30458,美国7 RTI国际,研究三角公园,美国北卡罗来纳州27709,美国 *通信:mblack@som.umaryland.edu†这些作者对这项工作做出了同样的贡献。6 Jiann Ping HSU公共卫生学院,佐治亚州南部大学,乔治亚州州立大学,乔治亚州30458,美国7 RTI国际,研究三角公园,美国北卡罗来纳州27709,美国 *通信:mblack@som.umaryland.edu†这些作者对这项工作做出了同样的贡献。
一种新的实验设置成功模拟了连续处理中的中断条件,并通过连续稀释确保最小残留腐蚀抑制剂。BDA-C14模型化合物抑制剂在所有抑制剂残留物从整体中除去所有抑制剂时都没有持久性。由于接触时间较长或预腐蚀影响抑制剂解吸行为,因此在表面上的铁层形成增加。这表明碳化铁层通过减少抑制剂解吸动力学来影响抑制剂的持久性。Langmuir等温模型被证明是对抑制剂的吸附和解吸建模的有用技术。建模结果表明,持续的治疗抑制作用是根据吸附/解吸机制强烈取决于大体中CI浓度的。
全世界有超过30亿人患有贫血相关的铁缺乏症,并且人数相等的人患有锌的缺乏症。这些条件在撒哈拉以南非洲和南亚地区更为普遍。在发展中国家,发现五十岁以下的儿童患增长和怀孕或哺乳期妇女的儿童受锌和铁的高度高风险。生物体质定义为开发种类的种类,其谷物含有较高水平的微量营养素,例如铁和锌,是最有前途的,成本效益和可持续的方法之一,可以改善资源贫乏家庭的健康状况,尤其是在家庭中融合了某些部分生长的家庭中的农村地区。通过小麦中的常规育种(尤其是谷物锌和铁)进行的生物体现,从野生和相关物种转移了重要的基因和定量性状基因座(QTL),从而做出了显着的贡献。尽管如此,小麦晶粒中铁和锌水平的定量,遗传复杂的性质限制了传统繁殖的发展,因此很难获得产量和晶粒矿物质浓度的遗传增益。小麦生物增强物可以通过增强矿物质吸收,矿物质的来源到链接易位以及它们沉积到谷物中以及矿物质的生物利用度来实现。在小麦中检测到了许多对这些特征的QTL,具有重大和较小的效果;将最有效的繁殖线引入将增加谷物锌和铁浓度。实现此目标的新方法包括标记辅助选择和基因组选择。需要合并更快的育种方法,以同时增加小麦育种线中的谷物矿物质含量和产量。
我们考试专家团队制作了“BOOST UP PDFS”系列,提供关于推理、定量能力、英语部分和一般意识部分的所有主题的最佳免费 PDF 学习材料。此 Boost Up PDF 为您提供不同级别的问题,包括简单、中等和困难,以及新模式问题。我们还提供 SSC 和 RRB 考试的所有学习材料。每个 PDF 包含 50 个问题及其解释。有关更多 PDF,请访问:pdf.exampundit.in
多形性胶质母细胞瘤 (GBM) 是最常见且最具侵袭性的脑癌,由于恶性细胞对常规疗法具有固有的耐药性,治疗选择通常受到限制。我们研究了使用 BH3 模拟药物在人类 GBM 细胞系中触发程序性细胞死亡 (PCD) 的影响。我们证明,与使用替莫唑胺或溴结构域抑制剂 JQ1 的常规体外疗法相比,同时靶向促存活蛋白 BCL-XL 和 MCL-1 可更有效地杀死六种 GBM 细胞系。与单一药物治疗相比,在使用 TMZ 或 JQ1 联合 BCL-XL 抑制剂的双重治疗下,U251 和 SNB-19 细胞中观察到细胞杀伤力增强。这反映在 caspase-3 的大量裂解/活化以及 PARP1 的裂解(凋亡标志物)中。与使用 BCL-2 抑制剂 Venetoclax 和 BCL-XL 抑制剂的双重治疗相比,使用针对 BCL-XL 和 MCL-1 的 BH3 模拟物组合更容易杀死 U251 和 SNB-19 细胞。BAX 和 BAK(内在凋亡的基本执行者)的共同丧失使 U251 和 SNB-19 细胞对任何测试的药物组合都具有抗药性,表明凋亡是导致它们死亡的原因。在 GBM 的原位小鼠模型中,我们证明 BCL-XL 抑制剂 A1331852 可以渗透到大脑中,在肿瘤和健康大脑区域均检测到 A1331852。我们还研究了将铁死亡的小分子诱导剂 erastin 和 RSL3 与 BH3 模拟药物相结合的影响。我们发现 BCL-XL 或 MCL-1 抑制剂可与铁死亡诱导剂有效协同杀死 U251 细胞。总体而言,这些发现证明了双重靶向 GBM 中不同 PCD 信号通路的潜力,并可能指导 BCL-XL 抑制剂和铁死亡诱导剂与标准护理治疗的结合使用,以改善 GBM 疗法。
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
摘要 - 我们研究使用TIN/HF X ZR 1-X O 2/Interlayer/Si(MFIS)GATE堆栈的Si Fefet耐力疲劳期间,不同的层中和铁电材料对电荷捕获的影响。我们拥有具有不同层间(SIO 2或SION)和HF X ZR 1-X O 2材料(X = 0.75、0.6、0.5)的FeFET设备,并在耐力疲劳期间直接提取了电荷捕获。我们发现:1)层间中N元素的引入抑制了电荷捕获和缺陷的产生,并改善了耐力特征。2) As the spontaneous polarization ( P s ) of the Hf x Zr 1-x O 2 decreases from 25.9 μC/cm 2 (Hf 0.5 Zr 0.5 O 2 ) to 20.3 μC/cm 2 (Hf 0.6 Zr 0.4 O 2 ), the charge trapping behavior decreases, resulting in the slow degradation rate of memory window (MW) during program/erase cycling;另外,当P S进一步降低至8.1μc/cm 2(HF 0.75 ZR 0.25 O 2)时,初始MW几乎消失(仅〜0.02 V)。因此,P s的减少可以改善耐力特征。合同中,它也可以减少MW。我们的工作有助于设计MFIS Gate堆栈以提高耐力特征。
……… 1 事故调查过程和进展 2 ……………………………………………………………… 1.1 事故摘要 2 ………………………………………………… 1.2 事故调查概要 2 …………………………………………… 1.2.1 调查的组织 2 ………………………………………… 1.2.2 调查的实施 3 …………………………………………………… 1.2.3 中期报告和建议 3 …………………………………………………………………… 1.2.4 公开听证会 3 ………… 1.2.5 听证会,听取与事故原因有关人员的意见 4 ……………………………………………………………… 2 事实信息 5 …………………………………………………………………… 2.1 飞行历史 5 2.1.1 根据机载记录器的记录的飞行历史及………………………………………………………… ATCRocorder 等5 …………… 2.1.2 飞行机组关于飞行历史的陈述 11 ………………………… 2.1.2.1 飞机-A 机长陈述 11 2.1.2.2 受训飞行员的陈述 ( ) 的见习飞行员 ………………………………………………………… 飞机-A 13 …………………… 2.1.2.3 飞机-A 副驾驶的陈述 14 ………………………… 2.1.2.4 飞机-B 机长陈述 15 …………………… 2.1.2.5 飞机-B 副驾驶的陈述 16 ……………………………………… 2.1.3 空中交通管制员的陈述 17 …… 2.1.3.1 受训管制员 ATC 见习飞行员的陈述17()………………………… 2.1.3.2 空中交通管制值班主管的陈述 18 ………………………………………… 2.1.3.3 协调员的陈述 19 ………………………… 2.1.4 事故发生时客舱内的情况 20 ………………………… 2.1.4.1 飞机-A 的 CP 和 CA 的陈述 20 …………………………… 2.1.4.2 飞机-A 的乘客的陈述 21 ……………………………………………………………… 2.2 人员受伤 22 ………………………………………………………… 2.3 飞机损坏 23 …………………… 2.4 有关机组人员和空中交通管制员的信息 24 ………………………………………………………………… 2.4.1 飞行机组 24 …………………………………… 2.4.1.1 日航 907 航班机组人员 24 ………………………………………… 2.4.1.2 日航 958 航班机组人员 26 ……………………………………… 2.4.2 日航 907 航班乘务员 27 ……………………………………………………… 2.4.3 空中交通管制员 28 …………………………………………………………… 2.5 飞机信息 30 ……………………………………………………………… 2.5.1 飞机-A 30 ……………………………………………………………… 2.5.2 飞机-B 30