羟基磷灰石(HA)由于其出色的生物相容性和生物学活性而广泛用于组织工程中。在这项研究中,使用无定形铝硅酸盐(AAS)对HA粉末进行了修饰。ha/AAS杂种是通过湿沉淀方法合成的。制备HA – AAS/壳聚糖 - 凝集素聚合物的复合材料,并使用X射线衍射测量法,傅立叶变换红外光谱,透射电子显微镜,扫描电子显微镜,孔径尺寸分布和表面积测量表进行表征。结果表明,具有棒状结构的HA和AAs的板是通过壳聚糖 - 胶质素网络连接到复合材料中的,从而导致由于聚合物涂层引起的特定表面积减少。AAS纳米颗粒含量较低的生物复合材料在3.1至7.3MPa的范围内表现出抗压强度,范围为0.11至0.21GPa,其范围内,该范围位于人类占用骨的范围内,其范围为2-12 MPa和0.05-0.5gpa,范围内。生物活性研究证明,复合材料样品增强了骨细胞细胞(MC3T3-E1)的增殖,并且比粉末样品表现出低的毒性。此类发现将未来用于取消骨骼应用的多功能材料阐明了Ha-AAS/壳聚糖 - 胶质素复合材料。
动态,创新且面向未来的,即欧洲复合式®组。为了遵守其原则,EC已经开始了小规模的生产,并将在2021年上半年开始在全球最现代的植物之一,用于制造磷酸阳极阳极阳极氧化铝蜂窝状核心,并在合金5052和5056中使用腐蚀保护。该项目是公司历史上最大的投资之一。在其位于德国比特堡(Bitburg)(德国)的地点的生产中,EC将大大提高其产品范围的现有能力(面板,CNC零件,形成零件)以及航空航天部门的新开发项目。具有新的生产磷酸阳极氧化铝蜂窝状核心的产品线,欧洲复合物®组将再次扩大其产品组合,使其能够更加专门针对客户的需求做出反应。
1.图 2-1:板-加强筋和 HAZ 的材料曲线 (Rigo et al.2003) ..........................8 2.图 3-1:6061 和 5083 材料中的应力-应变曲线比较.............................................13 3.图 6-1:AL5083 和 AL 6082 的应力-应变关系.............................................49 4.图 6-2:板和加强筋的热影响区 (HAZ) (Paik 2005) .............................50 5.图 6-3:加强板的有限元模型.........................................................................51 6.图 6-4:带HAZ ................................................................................51 7.图 6-5:带 HAZ 的挤压板有限元模型 ..............................................................52 8.图 6-6:应用于有限元模型的边界条件 ................................................................52 9.图 7-1:极限强度比较(FEA 结果) .............................................................................55 10.图 7-2:极限强度比较:综合性能与降低的母材性能 .............................................................................................................61 11.图 7-3:模型 11 的极限强度比较:综合性能与增加的 HAZ 性能(25% 更高的屈服强度) .............................................................................................61 12.图 7-4:强度降低与失效应力除以 HAZ 屈服强度..................62 13.图 7-5:平均失效应力下强度降低与 HAZ/基准切线模量比率.........................................................................................................................62 14.图 7-6:拉伸载荷工况屈服点比较.........................................................................................64 15.图 7-7:屈服点侧压力图.........................................................................................................68 16.图 7-8:侧压力相对于屈服点的百分比差异。组合情况 ...........................68 17.图 7-9:假设的软化区 (Paik 2005) ......................................................................................69 18.图 7-10:带软化区的板-加强筋组合横截面 (Paik 2005) .............................................................................................................................................69 19.图7-11:极限强度比较......................................................................................73
摘要我们经常观察到一些具有层状阴极材料的失控锂离子电池内部温度比现有热失控模型预测的要高得多。此外,正极活性材料中原有的金属(如 Co、Ni 和 Mn)经常出现在温度变得非常高的电池中。有人推测金属的形成可以归因于岩盐物质(MO,其中 M 是金属)的还原,或锂化活性材料(LiMO 2 )与 CO 2 的反应。我们提出了金属形成的另一种解释,这也会导致非常高的电池温度,即 Al 正极集流体和正极活性材料之间的铝热反应。与提到的 MO 和 LiMO 2 的反应相反,这些反应是高度放热的。本文介绍了铝热反应的化学性质。在失控模型中加入铝热反应可能会改善热失控时锂离子电池的温度预测。
10.如权利要求1-9所述的铝-水氢能存储系统,适用于:a.车辆电池系统,适用于各种类型的车辆,包括但不限于汽车、卡车和电动公交车;和/或b.独立的大容量能量存储单元,能够集成到货物集装箱或其他可运输配置中,便于高效运输和部署。
摘要:在过去的20年中观察到了锂离子电池(LIB)的指数市场增长;仅在2017年,大约有670,000吨的Libs才出售。由于消费者对电动汽车的兴趣日益增加,汽车制造商的最新参与,储能设施的最新发展以及政府对运输电力的承诺,因此这种趋势将继续持续。尽管在LIB商业化后早些时候开发了一些有限的回收过程,但在可持续发展的背景下,这些过程并不足够。因此,已经建立了显着的效果,以替代常用的倍率递质回收方法,以较不利的方法,例如水透明术,尤其是基于硫酸盐的浸出或直接回收。基于硫酸盐的浸出是目前用于回收LIB的唯一大规模水透明方法,并作为目前正在开发的几个试点或示范项目的基线。相反,大多数项目和过程仅着眼于NI,CO,MN和LIS的恢复,并且浪费了磷酸铁磷酸锂(LFP)电池的浪费。尽管这种电池类型并未主导LIB市场,但其在LIBS废物流中的存在引起了一些技术问题,从而影响了当前回收过程的利用率。本评论探讨了当前的过程和替代解决方案,包括新型的选择性浸出过程或直接回收方法。
Cognet, M.、Cambedouzou, J.、Madhavi, S.、Carboni, M. 和 Meyer, D. (2020)。通过选择性沉淀作为有价值的多孔材料,有针对性地去除锂离子电池废液中的铝和铜。材料快报,268,127564‑。https://dx.doi.org/10.1016/j.matlet.2020.127564
摘要:近年来,复合材料在电子工业和其他制造业中占据了主导地位。因此,铝碳化硅 (AlSiC) 等复合材料已被用于生产散热器,主要用于管理电子设备中的热量。然而,这种复合材料的热疲劳是维持设备可靠性的主要挑战。本文研究了 AlSiC 复合材料的热机械效应。有限元法 (FEM) 用于分析基于 10 – 50% 成分之间的颗粒夹杂物的复合材料。本研究中使用的热曲线 (-40 o C 至 85 o C) 已在商业上用于消费产品。获得并评估了基于应力和应变参数的复合材料的疲劳寿命。本研究的结果表明,变形、应变和应力随着颗粒夹杂物百分比的增加而减小。此外,复合材料的疲劳寿命表明,夹杂物越多,材料的可靠性就越高。这项研究表明,与其他夹杂物相比,50% 颗粒夹杂物的疲劳失效循环数 (5.09E+04) 更高。而根据这项研究,10% 夹杂物的疲劳寿命最短 (4.39E+04)。DOI:https://dx.doi.org/10.4314/jasem.v24i6.3 版权:版权所有 © 2020 Ekpu。这是一篇开放获取的文章,根据知识共享署名许可 (CCL) 分发,允许无限制地使用、分发和复制,只要正确引用原始作品。日期:收到:2020 年 4 月 11 日;修订:2020 年 5 月 15 日;接受:2020 年 6 月 5 日关键词:复合材料;温度曲线;碳化硅;热疲劳为了改善电子设备的热管理,必须彻底改变最初用于管理热量的传统材料。铜和铝是用于热管理的最常用材料(Ekpu 等人,2011 年)。然而,复合材料的使用大大增强了电子应用中的热管理。因此,研究复合材料的热机械行为确实是必要的。研究人员(如 Babalola 等人,2018 年;Xiao-min 等人,2012 年;Wang 等人,2009 年)研究了复合材料,以确定其电气、物理和机械性能。Babalola 等人(2018 年)介绍了一项关于搅拌铸造法生产的 AlSiC 复合材料的电气和机械性能的研究。在他们的研究中,将获得的实验结果注入人工神经网络 (ANN) 以预测复合材料的性能。这项工作的本质旨在降低进行实验的高成本及其相关挑战。Kumar 等人(2019 年),研究了电火花加工 (EDM) 加工的铝基复合材料表面的完整性。他们的研究表明,纯 AlSiC 复合材料的表面缺陷小于添加了 B 4 C 颗粒的 AlSiC 复合材料。Hassan 和 Hussen (2017) 研究了
美国铝业就业:对国家至关重要 铝是美国制造业的独特元素,支持航空航天、交通运输、建筑、国防、包装、基础设施和美国经济的许多其他领域。铝被指定为关键矿物,并被商务部和国防部认定为对国家安全“至关重要”。该行业支持近 700,000 个美国就业岗位,包括数万名生产、制造和回收金属的男女。铝行业生产许多在公共卫生危机期间必不可少的产品,包括医疗用品、建筑材料、运输设备以及食品和饮料包装的投入。地方、州和联邦政府必须确保铝行业运营和员工被指定为“必不可少”的,并在当前的 COVID-19 大流行期间不受任何“就地避难”命令的约束。铝工人和企业的紧急行动
研究人员开始寻找能够满足航空航天工业所有要求的新材料。当用单一材料几乎不可能实现这一点时,复合材料就得到了研究,并且在这一领域取得了长足的发展。飞机制造中使用了许多元素,但铝是最受欢迎的,因为它密度低、铸造性好、强度高、耐腐蚀、疲劳强度好。然而,它的强度和刚度限制了它的可用性。为了解决这个问题,铝与各种元素结合在一起。铝金属基复合材料就是一个例子。铝金属基复合材料因其高比模量和良好的机械和热性能而成为飞机应用中的首选。本综述提供了有关铝金属基复合材料在航空航天工业中的使用的信息。