这是一系列关于不同主题的资源信函之一,旨在指导大学物理学家、天文学家和其他科学家了解一些文献和其他教学辅助工具,这些文献和其他教学辅助工具可能有助于改进特定领域的课程内容。[项目后面的字母 E 表示初级水平或对该领域感兴趣的人普遍感兴趣的材料。字母 I 代表中级水平,表示材料具有更专业的性质;字母 A 表示相当专业或高级的材料。] 没有一份资源信函是详尽无遗的;随着时间的推移,可能会有不止一封信函涉及一些主要感兴趣的主题。欢迎对这些材料的评论以及对未来主题的建议。请将此类通信发送给 Roger H. Stuewer 教授,AAPT 资源信函编辑,物理和天文学院,116 Church Street SE,明尼苏达大学,明尼阿波利斯,MN 55455。
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在这二十年里,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个原子和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这个新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者来说最有用和最有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍时间、计时和时间的用途,特别是在科学和技术领域。但很快我就发现,我的许多同事都会不时地参考这本书,温习一下其中的内容。这也许并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
频率测量的理论 41 时间间隔测量 42 使用测量系统 44 计算机控制的测量系统 46 参考频率 47 分频器 48 时间间隔计数器 48 计算机 49 测量系统的输出 50 系统的日常操作 51 记录保存 53 频率测量的可追溯性 53 频率校准测量的内容 55 总结 60
当使用由 NMI 控制的广播服务时,计量学家使用图 3 所示的链来建立可追溯性。链路 A 将 BIPM 连接到 NMI。链路 A 的不确定性可以从 BIPM 的 Circular T 中获得(fiwt 之后)。链路 B 是 NMI 和广播服务之间的控制链路。链路 B 的不确定性可以从 NMI 获得。一些广播服务直接连接到 NMI 维护的 UTC 时间尺度;其他广播服务位于远程位置并参考定期与 UTC 进行比较的频率标准。链路 C 将广播服务连接到用户。这种不确定性是由于 NMI 和用户之间的信号路径造成的。通常,通过低频 (LF) 无线电或卫星路径传播的信号比通过高频 (IF) 无线电路径或电话或互联网路径传播的信号具有较小的不确定性。链路 D 是广播信号与用户的参考标准、工作标准或测量仪器之间的链路。例如,广播服务可用于校准参考标准。参考标准现在可追溯至 NMI,并用于校准工作标准和测量仪器。从定义上讲,可追溯性是测量的结果。因此,参与测量过程的一切都可能给链路 D 带来不确定性,包括接收仪器、天线系统、软件、测试设备、校准程序和人为错误。[6]