新的咪唑-5-氮杂化合物的合成5 - (((e)-Benzylidene)-3-((4'-(((Z)-Phenyldiazenyl)) - [1,1,1'-二苯基] -4-4- ylive- 2-乙烯基)-3-乙烯基-3,5-二氢-4 h-imidazol-4--在此工作,并在此工作。α,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。 通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。 抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。 k e y w o r d sα,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。k e y w o r d s
al(oh)(NDC)-dut-4,NDC为2,6-萘二羧酸盐; B Zn(BIM)(NIM),BIM为Benzimidazole和Nim为2-硝基咪唑; C Zn(CBIM)(nim),用CBIM为5-氯苯唑唑; D Zn(IM)1.13(NIM)0.87,IM为ditopic Imidazy; E C 29 H 19 F 9 NO 8.25 Zn 2; f Cu(HBTB)2,H 3 BTB为1,3,5-Tris(4-羧基苯基)苯); g cu-btc的BTC为1,3,5-苯甲酸羧酸; H Zn(MIM)2与MIM为2-甲基咪唑酸I pdadmac作为聚二甲米甲基铵氯化物; J CO(MIM)2; K SWCNT为单壁碳纳米管; l PEG 20,000作为聚乙烯甘油
尚未对依他普仑与其他延长 QT 间期的药物联合使用进行药代动力学和药效学研究。不能排除依他普仑与这些药物的叠加效应。因此,禁止将依他普仑与延长 QT 间期的药物联合使用,例如 IA 类和 III 类抗心律失常药、抗精神病药(例如吩噻嗪衍生物、匹莫齐特、氟哌啶醇)、三环类抗抑郁药、某些抗菌剂(例如司帕沙星、莫西沙星、红霉素 IV、喷他脒、抗疟治疗药物尤其是卤泛群)、某些抗组胺药(阿司咪唑、咪唑斯汀)。
卡介苗 ( BCG ) 是由灭活的分枝杆菌制成的,在世界各地普遍用作结核病疫苗,可作为疫苗接种或免疫的有效佐剂。然而,它也可以直接用于浅表性膀胱癌的术后治疗。在六周的时间内,定期将 BCG 悬浮液滴入膀胱;这会促进炎症,从而刺激抗肿瘤免疫反应。左旋咪唑是一种低毒性免疫刺激的兽用驱虫药,已与其他疗法联合使用,以增强多种感染中的细胞介导免疫力。左旋咪唑与癌症化疗药物 5-氟尿嘧啶联合使用,用于治疗结肠癌,据认为它可以刺激巨噬细胞和 T 细胞产生抗肿瘤细胞因子和因子。
在不同长度尺度上材料合成与合并参数之间的关系,以控制和获得所需的功能性能。这个主题问题探讨了先进的无机材料合成,建模和仿真的最新发展,包括新型制造过程,扩展方法以及财产评估和优化。AFM具有较高潜力的一个区域是电化学能源存储区域。电池材料需要在半多孔矩阵中精确放置组件,以最大程度地提高储能和传输性能。材料的经济和加工对于这些材料的结构 - 秘密组成关系至关重要。该系列强调了阳极和阴极材料的开发,用于LI-或其他金属电池,包括基于CA的材料的潜力。在Dong等人中。 ,双阳离子取代过程用于将无序的岩盐变成1.2 Ni 0.4 mo 0.4 mo 0.2 mg 0.2 o 2适合作为阴极的材料(https://doi.org/ 10.1039/d2ma00981a)。 这些材料在10个循环上显示出195 mA H G 1的排放能力,在无序和有序结构之间与循环结构交替。 Xu等。 在Li 4 Ti 5 O 12材料(https://doi.org/ 10.1039/d2ma00741j)中解决阳极侧的相关问题。 这种材料作为阳极材料有希望;但是,高反应性降低了它们的效率。 他们检查了添加剂的使用,在Dong等人中。,双阳离子取代过程用于将无序的岩盐变成1.2 Ni 0.4 mo 0.4 mo 0.2 mg 0.2 o 2适合作为阴极的材料(https://doi.org/ 10.1039/d2ma00981a)。这些材料在10个循环上显示出195 mA H G 1的排放能力,在无序和有序结构之间与循环结构交替。Xu等。 在Li 4 Ti 5 O 12材料(https://doi.org/ 10.1039/d2ma00741j)中解决阳极侧的相关问题。 这种材料作为阳极材料有希望;但是,高反应性降低了它们的效率。 他们检查了添加剂的使用,Xu等。在Li 4 Ti 5 O 12材料(https://doi.org/ 10.1039/d2ma00741j)中解决阳极侧的相关问题。这种材料作为阳极材料有希望;但是,高反应性降低了它们的效率。他们检查了添加剂的使用,
混合玻璃的形成为加工块状金属有机骨架 (MOF) 提供了一种潜在途径,然而,只有少数 MOF 被证明是可熔的。对于不可熔的沸石咪唑酯骨架 ZIF-8,最近发现离子液体 (IL) 的加入可将熔化温度降低到热分解温度以下,从而能够形成 IL@ZIF-8 玻璃。本文报道了 IL 的加入对一些沸石咪唑酯骨架 (ZIF) 和其他 MOF 在加热时的焓响应的影响。对于 ZIF-62、ZIF-67、ZIF-76 和 MIL-68,金属位点的可及性和 MOF 的孔隙率决定了 IL@MOF 复合材料的可熔性。 IL 的加入使得 ZIF-76 玻璃得以形成,并显著降低了 ZIF-62 的熔化温度,但似乎无助于 ZIF-67 或 MIL-68 的熔化(在热分解之前)。尽管 IL 的热稳定性极限在控制 IL@MOF 复合材料的熔化窗口方面起着重要作用,但通过仔细选择熔化温度,可以在很大程度上避免熔化时的热分解和成分变化。IL 的加入似乎为熔化 MOF 提供了一种更通用的途径,但需要仔细适应特定的 MOF 架构。
由于其高灵敏度、低毒性、良好的空间和时间分辨率、发射可调、操作简单和非侵入性,它被广泛用于成像。6 用于缺氧成像的荧光探针通常以癌症标志物为目标,特别是与缺氧相关的还原酶。在缺氧肿瘤微环境中,还原酶(如偶氮还原酶和硝基还原酶)过度表达。偶氮基团是对偶氮还原酶敏感的部分,而硝基咪唑是对硝基还原酶敏感的部分。已经开发出各种小分子荧光团用于缺氧条件成像 7 然而,纳米材料由于增强的渗透性和保留 (EPR) 效应而能够实现被动肿瘤积聚和保留。8 这促使人们研究各种用于缺氧成像的纳米材料,9 但非常适合的共价有机框架 (COF) 却被忽视了。由于其纯有机性质、结构和功能可调性、以及可用于药物输送的多孔性,COF 是细胞状况成像的有力候选者。目前仅对少数 COF 进行了生物成像研究,其中细胞成像主要利用材料固有的荧光 10,11 或依靠共轭部分的荧光实现,例如染料标记的核酸 12,13 和荧光探针。14 关于使用 COF 对任何特定细胞状况进行成像的报道更是凤毛麟角。15 在此,我们设计并表征了一种具有硝基还原酶敏感部分的 COF,用于缺氧荧光成像。我们在 b -酮烯胺化学的帮助下合成了一种荧光 COF,16 并在合成后对其进行修饰,以结合硝基咪唑,用于靶向肿瘤缺氧条件下的硝基还原酶。 2-硝基咪唑衍生物是电子缺乏的化合物,已知可作为外源性缺氧标记物,经过生物还原活化后选择性地被缺氧细胞捕获(图 S1,ESI†)。17 由此获得的硝基咪唑 COF(NI-COF)在生理条件下稳定,在中性 pH 和肿瘤组织特有的酸性 pH 水平下均表现出有用的荧光特性,发射峰位于 480 nm(l ex = 420 nm)。利用其低细胞毒性,我们将 NI-COF 用作荧光成像
© 阿菲永科卡特佩大学摘要 本研究以苯胺衍生物为原料,合成了一种新型的咪唑和喹啉基偶氮化合物 (MITPDQ),该苯胺衍生物用作合成用于治疗白血病的尼洛替尼的中间体,并对其进行了表征,并用 NMR、FTIR、UV、FTIR 和 MS 等光谱技术阐明了其结构。使用 DFT (B3LYP) 方法和 6-311G (d,p) 基组进行理论计算,以获得 MITPDQ 的优化几何形状和光谱数据。将实验结果与理论结果进行了比较,发现它们是彼此兼容的。利用优化的 MITPDQ 几何形状,还与癌症相关蛋白质进行了分子对接研究。从对接结果来看,MITPDQ 和 2XIR 蛋白之间的最高对接得分为 -11.0 kcal/mol。此外,还计算了 MITPDQ 的 ADMET 属性。通过ADMET和分子对接研究,我们得出结论,经过进一步的研究,MITPDQ具有成为候选药物的潜力。关键词 咪唑;喹啉;量子化学计算;分子对接;ADMET
本发明人发现了一种新颖的本发明涉及一组基于咪唑并[1,2-b]哒嗪的具有三环核心的化合物,它们是HASPIN的抑制剂,其活性是某些肿瘤细胞增殖所必需的,因此本发明的化合物单独或与化疗药物联合用于预防和/或治疗癌症。
可见光光聚聚合正面临着一场革命,随着节能光源的发展,即LED。持续开发光电系统的努力在聚合速率和单体转化方面优于现有的系统,从学术角度来看,寻找尚未在光聚聚合中尚未研究的新染料的搜索仍然非常活跃。最近,萘醌 - 咪唑基和萘醌 - 噻唑衍生物已被鉴定为可在人造光源或太阳下设计的I型和II型光通剂的有趣结构。萘喹酮是生物化化合物,可以大大减少光聚合的碳足迹。萘喹酮也是用于设计光初步器的廉价前体,使其能够设计低成本的吸光结构。通过其广泛的吸收光谱,萘喹酮也是设计阳光光学剂的出色候选者。在这篇综述中,报告了这两个脚手架的不同结构,并提供了光学能力的比较。