n- [2-(二乙基氨基)乙基] -2-甲氧基-5-(甲基磺酰基)苯甲酰胺一氢氯化物(IUPAC)
柯林斯航空继续走在冰检测技术的前沿。我们的磁致伸缩冰检测技术提供灵活、坚固的设计,可在各种结冰环境中检测冰。该技术能够检测到小至 0.001 英寸的积冰,同时对各种类型的污染不敏感。我们的传感元件具有高收集效率,相对于飞机表面具有出色的灵敏度。针对冰检测和结冰严重程度的优化设定点可在早期检测和最小化防冰操作之间取得平衡。冰检测器的结冰严重程度和液态水含量测量值可提供给防冰控制器,以调节和优化防冰系统的控制。
制导炸弹装置通过跟踪激光指示器或锁定事先确定的目标 GPS 坐标来引导自己到达目标。重力将炸弹拉向地面(它们不像导弹那样被推进),但坠落由自调节翼片控制,该翼片根据机载计算机和电子传感器系统的命令纠正武器的航向。在投放之前,这些设备需要由携带它们的飞机通知,这意味着目标的坐标必须传输到挂架,并通过挂架传输到炸弹。
D0220 口内 - 根尖周第一张射线图像 $0 D0230 口内 - 根尖周每张附加射线图像 $0 D0240 口内 - 咬合射线图像 $0 D0250 口外 - 使用固定辐射源和探测器创建的 2D 投影射线图像 $0 D0251 口外后牙射线图像(每年限制一张 D0251 或 D0705) $0 D0270 咬翼 - 单张射线图像(每年限制两张) $0 D0272 咬翼 - 两张射线图像(每年限制两张) $0 D0273 咬翼 - 三张射线图像(每年限制两张) $0 D0274 咬翼 - 四张射线图像(每年限制两张) $0 D0277 垂直咬翼 - 7 至 8射线图像(每年限制两张) $0 D0310 涎管造影 $105 D0320 颞下颌关节造影,包括注射 $175 D0321 其他颞下颌关节射线图像,按报告 $105 D0322 断层扫描调查 $105 D0330 全景射线图像(每 3 年限制一张 D0330 或 D0701) $0 D0340 2D 头颅测量射线图像 – 采集、测量和分析 $30 D0350 口内或口外获得的 2D 口腔/面部摄影图像 $0 D0364 视野有限的锥形束 CT 捕获和解释 – 少于一个完整的颌骨(仅与植入物的手术放置相关);总共只能使用一次 D0364、D0365、D0366 或 D0367 一次) 120 美元 D0365 锥形束 CT 捕获和解释,带有一个完整牙弓的视野 - 下颌骨(仅与植入物的手术放置结合使用;每年总共只能使用一次 D0364、D0365、D0366 或 D0367 一次) 120 美元 D0366 锥形束 CT 捕获和解释,带有一个完整牙弓的视野 - 上颌骨,有或没有颅骨(仅与植入物的手术放置结合使用;每年总共只能使用一次 D0364、D0365、D0366 或 D0367 一次) 120 美元 D0367 锥形束 CT 捕获和解释,带有两个颌骨的视野;有或无颅骨(仅与植入物的外科手术放置相结合提供保障;每年总共仅限一次 D0364、D0365、D0366 或 D0367)140 美元 D0368 颞下颌关节系列的锥形束 CT 捕获和解释,包括两次或两次以上的曝光(每年仅限 1 次)125 美元 D0369 颌面 MRI 捕获和解释 125 美元 D0370 颌面超声捕获和解释 110 美元 D0371 涎腺内窥镜捕获和解释 110 美元 D0380 视野受限的锥形束 CT 图像捕获 – 少于一个完整的颌骨 100 美元 D0381 具有一个完整牙弓视野的锥形束 CT 图像捕获 – 下颌骨 90 美元 D0382 具有一个完整牙弓视野的锥形束 CT 图像捕获 – 上颌骨、带或不带颅骨 $90 D0383 锥形束 CT 图像捕获,可捕获双颌视野;带或不带颅骨 $120 D0384 锥形束 CT 图像捕获,用于 TMJ 系列,包括两次或两次以上曝光 $90 D0385 颌面 MRI 图像捕获 $110 D0386 颌面超声图像捕获 $110 D0391 与图像捕获无关的从业人员对诊断图像的解释,包括报告 $0 D0393 使用 3D 图像体积或表面扫描进行虚拟治疗模拟 $0 D0394 对同一模态的两个或多个图像或图像体积进行数字减影 $0 D0395 融合一个或多个模态的两个或多个 3D 图像体积 $0
美国宇航局艾姆斯研究中心在 20 世纪 90 年代初对超音速商用客运斜翼全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有丰富经验的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保将现实世界的设计约束纳入研究,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜翼全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由美国宇航局艾姆斯研究中心的团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
亮点 过去 12 个月投资额为 59 亿美元(22 年第四季度为 69 亿美元) 第一季度投资额为 14 亿美元(22 年第四季度为 8.01 亿美元) Seraphim 投资指数排名第 233 位(22 年第四季度排名第 272 位) Seraphim 交易指数排名第 281 位(22 年第四季度排名第 257 位) 第一季度完成的最大交易为 1.65 亿美元(Isar Aerospace) 第一季度平均交易规模为 1,430 万美元(22 年第四季度为 970 万美元) 第一季度交易规模中值为 450 万美元(22 年第四季度为 350 万美元) 宣布成立 1 家太空相关 SPAC(第四季度为 0 家)
内部空间非常适合两名体型较大的飞行员,宽度比赛斯纳 172 稍大。与 Sling High Wing 相比,一个显著的区别是垂直稳定器比低翼飞机高 20 厘米。Sling High Wing 和 Sling TSi 的显著区别在于发动机罩右侧的大型 NACA 管道,它将空气送入发动机的大容量中冷器。弓形复合材料主起落架支柱是 Sling Aircraft 的标准配置,并连接到单体式机身下侧,与 Sling TSi 相比变化很小。复合材料门关闭牢固,在原型机上,它们安装得非常好。门方便地铰接在机身两侧的前部。后排座椅提供了充足的舒适度,座椅后面有一个行李舱。前轮也没有变化,允许与 Sling TSi 一样向前安装防火墙。 ZU-SHW 是一个原型机,我听说该飞机的完成度达到了 95%,但是团队希望生产模型的完成度达到 100%,因此在他们乐意将 Sling High Wing 投入批量生产之前,还需要进行一些“调整”。
使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
对我的生活产生了深远的影响。因此,这本书也是对我父母和直系亲属的感谢,以及对我在学生时代和职业生涯中幸运遇到的老师和导师的感谢。这也是对我年轻同事不懈的热情和努力的致敬,他们帮助我们实现了共同的梦想。艾萨克·牛顿关于站在巨人肩膀上的名言对每一位科学家都适用,我当然要从杰出的印度科学家那里得到巨大的知识和灵感,其中包括维克拉姆·萨拉巴伊、萨蒂什·达万和布拉姆·普拉卡什。他们在我的生活中和印度科学史上扮演了重要角色。1991 年 10 月 15 日,我满 60 岁。我决定将退休后的时间用于履行我在