土壤提取物的准备:填充1升Schott瓶中三分之一的花园或中等含量的花园或叶子土壤,但腐殖质含量不高。土壤不得含有肥料或植物保护剂。土壤提取物的成功取决于选择合适的土壤。那些粘土含量高的人通常不那么令人满意。用Milli Q水弥补至700毫升,并在24小时内两次高压灭菌1小时进行消毒。通过离心分离倒液提取物与颗粒。通过Whatman滤纸将上清液过滤到1升Schott瓶中,在121°C下持续20分钟,然后将其存储在冰箱中。准备培养基,无菌去除30 ml土壤提取物。
淡化(咸水和海水)资源管理策略(淡化RMS)的目的是介绍加利福尼亚州的海水淡化的地位,其预计的未来用途及其利益和挑战。本文的讨论不会对淡化。淡化是一种方法,可以通过其他供水和需求管理方法来考虑或实施,包括保护,饮用和不可替代的再利用,雨水捕获以及基础设施的改进。这种淡化的RMS并未对其他供水方法进行排名,也不会优先考虑它们而不是脱盐。实施淡化以支持本地或区域供水资源的决心是当地供水者的决定,在仔细评估和考虑替代方案,符合适用的州和地方要求以及彻底的公共过程之后,进行了仔细评估和考虑之后做出的决定。
摘要Kaligangsa村Wetan Brebes是位于北海岸的村庄之一。与沿海地区相邻的位置导致了几个与腐蚀有关的问题。腐蚀不仅发生在房屋外,而且发生在房屋内的家用电器中。腐蚀发生在房屋外面,例如在围栏和盖子的盖子上,是由于缺乏对腐蚀的物质保护引起的,而房屋中发生的腐蚀通常是由于使用易腐蚀速度很高的咸水地下水而引起的。能够降低可以做几件事的腐蚀速率。对于室外腐蚀通常是使用涂层,而对于家用电器的腐蚀,可以做的一种方法是使用腐蚀抑制剂。通过使用该抑制剂,预计将降低由居民使用的水引起的腐蚀速率。计划实施方法是提供技术咨询,即根据原因的原因,包括使用所需剂量研究的家用材料的腐蚀抑制剂。关键字:腐蚀抑制剂,腐蚀控制,咸水水,咖啡提取物,抽象姜提取物:Kaligangsa Wetan Brebes村是北海岸的村庄之一。靠近沿海地区的位置导致与腐蚀有关的几个问题。为了降低腐蚀率,可以做几件事。发生的腐蚀不仅在房屋外,而且还发生在房屋内部的家用电器中。腐蚀通常是由于使用高腐蚀速率的咸水地下水引起的。可用于控制家用电器腐蚀的方法之一是使用腐蚀抑制剂。通过使用该抑制剂,希望它可以降低由居民使用的水引起的腐蚀速率。实施该计划的方法是根据原因提供技术咨询,即预防腐蚀方法,包括使用所需剂量研究的家用材料的腐蚀抑制剂。关键字:腐蚀抑制剂,腐蚀控制,咸水,咖啡提取物,姜提取物
咸水地下水也是重要的水源,可以提供新的水源并有助于减少对淡水供应的需求。在本报告中,咸水地下水被视为总溶解固体浓度在 1,000 至 10,000 毫克/升范围内的地下水。美国有 406 家市政咸水地下水淡化厂,其中大部分位于佛罗里达州(40%)、加利福尼亚州(14%)和德克萨斯州(13%)(Mickley,2018 年)。2003 年,德克萨斯州估计有超过 815 万亿加仑(25 亿英亩英尺)的咸水可用(LBG-Guyton Associates,2003 年)。截至 2024 年,已完成的咸水含水层研究表明,31 个主要和次要含水层中的 12 个含水层的总原地咸水地下水储量为 1,000 万亿加仑(32 亿英亩英尺)。这些体积计算方法之间的主要差异详见第 4.5 节。
• 淡水养殖(85%) • 咸水养殖(15%) • 咸水养殖(0.5%) • 海水养殖(可忽略不计) • 捕捞渔业:占鱼类产量的 1/3
I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。 独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。 可持续的能源技术和评估,2020,42,pp.100884。 10.1016/j.seta.2020.100884。 hal-02981480I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。可持续的能源技术和评估,2020,42,pp.100884。10.1016/j.seta.2020.100884。hal-02981480
咸水水产养殖在该国的社会经济发展中起着关键作用,并且被公认为是有力的收入和就业生成者,因为它会导致子公司的增长,除了是重要的外汇收入。该国的咸水部门拥有巨大而多样化的自然资源,其中包括390万公顷的河口,120万公顷的潜在咸水区,254万公顷的盐影响盐的土壤和850万公顷内陆盐水土壤。这些自然资源为该国的咸水水产养殖提供了巨大的机会;自1984年以来,该行业以10%的平均年率增长可以证实这一事实。这种增长与单一物种的耕种,老虎虾对penaeus monodon以及最近的太平洋惠特勒·虾对Penaeus vannamei有关。爆发了各种病毒疾病,以及虾养殖中的几种环境和社会问题,需求多样化,这些物种具有良好的国内和国际市场。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。